Источники звука. Звуковые колебания - Реферат

Звуковая волна (звуковые колебания) — это передающиеся в пространстве механические колебания молекул вещества (например, воздуха).

Но далеко не всякое колеблющееся тело является источником звука. Например, не издает звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если переместить ее в тисках вверх и тем самым удлинить свободный конец настолько, чтобы частота его колебаний стала меньше 20 Гц. Исследования показали, что человеческое ухо способно воспри¬нимать как звук механические колебания тел, происходящие с час¬тотой от 20 Гц до 20000 Гц. Поэтому колебания, частоты которых находятся в этом диапазоне, называются звуковыми. Механические колебания, частота которых превышает 20 000 Гц, называются ультразвуковыми, а колебания с частотами менее 20 Гц — инфразвуковыми. Следует отметить, что указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается — некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше 20000 Гц. Колебания, частоты которых больше 20 000 Гц или меньше 20 Гц, слышат некоторые животные. Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Замечали, к примеру, что звук создают вибрирующие в воздухе тела. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то уплотняет, то разрежает воздух, а благодаря упругости воздуха эти чередующиеся воздействия передаются дальше в пространство — от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука. На слух человек воспринимает упругие волны, имеющие частоту в пределах примерно от 16 Гц до 20 кГц (1 Гц — 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В воздухе при температуре 0° С и нормальном давлении звук распространяется со скоростью 330 м/с, в морской воде — около 1500 м/с, в некоторых металлах скорость звука достигает 7000 м/с. Упругие волны с частотой меньше 16 Гц называют инфразвуком, а волны, частота которых превышает 20 кГц, — ультразвуком.

Источником звука в газах и жидкостях могут быть не только вибрирующие тела. Например, свистят в полете пуля и стрела, завывает ветер. И рев турбореактивного самолета складывается не только из шума работающих агрегатов — вентилятора, компрессора, турбины, камеры сгорания и т. д., но также из шума реактивной струи, вихревых, турбулентных потоков воздуха, возникающих при обтекании самолета на больших скоростях. Стремительно несущееся в воздухе или в воде тело как бы разрывает обтекающий его поток, периодически порождает в среде области разрежения и сжатия. В результате возникают звуковые волны. Звук может распространяться в виде продольных и поперечных волн. В газообразной и жидкой среде возникают только продольные волны, когда колебательное движение частиц происходит лишь в том направлении, в каком распространяется волна. В твердых телах помимо продольных возникают также и поперечные волны, когда частицы среды колеблются в направлениях, перпендикулярны к направлению распространения волны. Там ударяя по струне перпендикулярно ее направлению, мы заставляем бежать волну вдоль струны. Человеческое ухо неодинаково восприимчиво к звукам разной частоты. Наиболее чувствительно оно к частотам от 1000 до 4000 Гц. При очень большой интенсивности волны перестают восприниматься как звук, вызывая в ушах ощущение давящей боли. Величину интенсивности звуковых волн, при которой это происходит, называют порогом болевого ощущения. Важны в учении о звуке также понятия тона и тембра звука. Всякий реальный звук, будь то голос человека или игра музыкального инструмента, — это не простое гармоническое колебание, а своеобразная смесь многих гармонических колебаний с определенным набором частот. То из них, которое имеет наиболее низкую частоту, называют основным тоном, другие — обертонами. Разное количество обертонов, присущих тому или иному звуку, придает ему особую окраску — тембр. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. По тембру мы легко отличаем звуки скрипки и рояля, гитары и флейты, узнаем голоса знакомых людей.

  • Частотой колебаний называют количество полных колебаний в секунду. За единицу измерения частоты принят 1 герц (Гц). 1 герц соответствует одному полному (в одну и другую сторону) колебанию, происходящему за одну секунду.
  • Периодом называют время (с), в течение которого происходит одно полное колебание. Чем больше частота колебаний, тем меньше их период, т.е. f=1/T. Таким образом, частота колебаний тем больше, чем меньше их период, и наоборот. Голос человека создает звуковые колебания частотой от 80 до 12000 Гц, а слух воспринимает звуковые колебания в диапазоне 16-20000 Гц.
  • Амплитудой колебаний называют наибольшее отклонение колеблющегося тела от его первоначального (спокойного) положения. Чем больше амплитуда колебания, тем громче звук. Звуки человеческой речи представляют собой сложные звуковые колебания, состоящие из того или иного количества простых колебаний, различных по частоте и амплитуде. В каждом звуке речи имеется только ему свойственное сочетание колебаний различной частоты и амплитуды. Поэтому форма колебаний одного звука речи заметно отличается от формы другого, на котором изображены графики колебаний при произношении звуков а, о и у.

Любые звуки человек характеризует в соответствии со своим восприятием по уровню громкости и высоте.

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам удовольствие. Нам приятно слушать человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах , которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Причина звука – вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

КАМЕРТОН - это U-образная металлическая пластина , концы которой могут колебаться после удара по ней. Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии. Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усиления звука. Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора. Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда .

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения, как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой от 16 до 20000 раз в секунду. Такие волны называются звуковыми. Вибрирующее тело может быть твердым, например, струна или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах или жидким, например, волны на воде.

Колебания с частотой меньше 16 Гц называется инфразвуком . Колебания с частотой больше 20000 Гц называются ультразвуком .

Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений (например, в результате колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

Привычное для всех нас понятие «звук» означает всего лишь воспринимаемый слуховым аппаратом человека набор звуковых колебаний. О том, какие колебания человек воспринимает, а какие нет, мы поговорим позднее.

Характеристики звука.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В отношении звуковых волн очень важно упомянуть такую характеристику, как скорость распространения.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Высота, тембр и громкость звука

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

70 дБ – шум пишущей машинки;

80 дБ – шум работающего двигателя грузового автомобиля;

120 дБ – шум работающего трактора на расстоянии 1 м

130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Частота зв уковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разны х источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наиболь шего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окрас ку, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретно го голоса.

Согласно легенде, Пифаго р все музыкальные звуки расположил в ряд, разбив этот ряд на части – октавы, – а

октаву – на 12 частей (7 основных то нов и 5 полутонов). Всего насчитывается 10 октав, обычно при исполнении музыкальных произведений используются 7–8 октав. Звуки частотой более 3000 Гц в качестве музыкальных тонов не используются, они слишком резки и пронзительны.

Проживая в мире различных волн, человек постоянно испытывает на себе влияние звука. Звуковые колебания - это не просто явление, сопровождающее его повсеместно, но и источник получения удовольствия, а также мощное информационное средство. Выполняя самые разнообразные функции, звук способен предостеречь об опасности, доставить удовольствие, стать средством общения. Мы с восторгом слушаем пение птиц, приятную музыку, вступаем в разговор с другими людьми.

Звуковые колебания имеют важное значение не только для человека, но и для животных, которые используют звук, чтобы выжить.

По своей природе звук представляет собой механические упругие волны, которые способны распространятся в твердых телах, в жидкостях, в газах. звуковые колебания вызывают вибрацией (механическим колебанием), которая зачастую глазу незаметна. К источникам звука можно отнести физические тела, осуществляющие колебания в секунду (дрожь или вибрацию) с частотой в 16-20000 раз. Звуковые колебания могут вызывать твёрдые тела (струна, земная кора), газообразные (струя воздуха), жидкие

Среди характеристик звука принято выделять два параметра: тембр - частота звуковых колебаний; громкость - амплитуды звуковой волны. Единицей громкости звука принято считать 1 Бел (её назвали по имени одного из изобретателя телефона - Александра Грэхема Белла). Практически один Бел не используется, удобнее пользоваться децибелами, равными одной десятой Бел. Чтобы иметь наглядное представление о размерности громкости следует принять во внимание, что 10 дБ - это шепот; 20-30 дБ соответствуют обычному шуму в жилом помещении; 50 дБ - это средней громкости разговор; с силой шума в 80 дБ работает двигатель грузовика; физиологический у человека наступает при 130 дБ; 180 дБ может привести к разрыву барабанной перепонки.

Рассматривая звуковые колебания различной частоты, к высокочастотным волнам относят пение птиц, к низким звукам можно отнести звук мотора грузового автомобиля. Обладая всем спектром свойств и характеристик, которыми отличаются волны различной природы, звуковые волны нашли широкое применение в различнейших сферах. Свойство жидкости проводить звук активно используется при разведке морских глубин. Всем известное эхо, например, применяется для определения расстояний в эхолокации. Ярким примером природных эхолокаторов можно назвать летучих мышей.

Особым видом звуковых колебаний является ультразвук, весьма эффективное средство в руках медиков и других исследователей. К таким колебаниям относятся волны с частотами за 20 000 Гц. Этот вид колебаний обладает целым рядом уникальных свойств. Проходя через воду, ультразвук вызывает её кипение (кавитацию) с возникновением гидравлического удара. С помощью ультразвука можно отрывать элементы от поверхности металла, дробить твердые тела. Ультразвук позволяет смешивать жидкости, которые в обычных условиях не смешиваются, к примеру, эмульсии с масляной основой. Ультразвук позволяет производить омыление жиров. Этот принцип лежит в устройстве стиральных машин. Свойство ультразвука производить дробящий эффект нашло применение в ультразвуковых паяльниках.

Источниками инфразвука могут стать машины и механизмы с большими поверхностями, которые совершают механические колебания (механическое происхождение) или потоки жидкостей и газов с турбулентными свойствами (гидродинамическое или аэродинамическое происхождение).

Вокруг нас очень много источников звука: музыкальные и технические инструменты, голосовые связки человека, морские волны, ветер и другие. Звук или, иначе, звуковые волны – это механические колебания среды с частотами 16 Гц – 20 кГц (см. § 11-а).

Рассмотрим опыт. Поместив будильник на подушечке под колокол воздушного насоса, мы заметим: тиканье станет тише, но всё равно будет слышно. Откачав из-под колокола воздух, мы перестанем слышать звук вообще. Этот опыт подтверждает, что звук распространяется по воздуху и не распространяется в вакууме.

Скорость звука в воздухе сравнительно велика: лежит в интервале от 300 м/с при –50°С до 360 м/с при +50°С. Это в 1,5 раза больше, чем скорость пассажирских самолётов. В жидкостях звук распространяется заметно быстрее, а в твёрдых телах – ещё быстрее. В стальном рельсе, например, скорость звука » 5000 м/с.

Взгляните на графики колебаний давления воздуха у рта человека, поющего звуки «А» и «О». Как видите, колебания являются сложными, состоящими из нескольких колебаний, накладывающихся друг на друга. При этом чётко видны основные колебания, частота которых почти не зависит от произносимого звука. Для мужского голоса это приблизительно 200 Гц, для женского – 300 Гц.

l max = 360 м/с: 200 Гц » 2 м, l min = 300 м/с: 300 Гц » 1 м.

Итак, длина звуковой волны голоса зависит от температуры воздуха и основной частоты голоса. Вспомнив наши знания о дифракции, мы поймём, почему в лесу слышно голоса людей, даже если их загораживают деревья: звуки с длинами волн 1–2 м легко огибают стволы деревьев, диаметр которых меньше метра.

Проделаем опыт, подтверждающий, что источниками звука действительно являются колеблющиеся тела.

Возьмём прибор камертон – металлическую рогатку, укреплённую на ящичке без передней стенки для лучшего излучения звуковых волн. Если ударить молоточком по концам рогатки камертона, он будет издавать «чистый» звук, называемый музыкальным тоном (например, ноту «ля» первой октавы с частотой 440 Гц). Придвинем звучащий камертон к лёгкому шарику на нити, и он тотчас же отскочит в сторону. Так происходит именно из-за частых колебаний концов рогатки камертона.

Причины, от которых зависит частота колебаний тела, – его упругость и размер. Чем больше размер тела, тем меньше частота. Поэтому, например, слоны с большими голосовыми связками испускают звуки низкой частоты (бас), а мыши, размер голосовых связок которых значительно меньше, – высокочастотные звуки (писк).

От упругости и размеров зависит не только как будет звучать тело, но и как оно будет улавливать звуки – откликаться на них. Явление резкого увеличения амплитуды колебаний при совпадении частоты внешнего воздействия с собственной частотой тела называется резонансом (лат. «резоно» – откликаюсь). Проделаем опыт по наблюдению резонанса.

Расположим два одинаковых камертона рядом, повернув их друг к другу теми сторонами ящичков, где нет стенок. Ударим левый камертон молоточком. Через секунду заглушим его рукой. Мы услышим, что звучит второй камертон, который мы не ударяли. Говорят, что правый камертон резонирует, то есть улавливает энергию звуковых волн от левого камертона, в результате чего увеличивает амплитуду собственных колебаний.

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?