Античная наука и ее особенности. Особенности античной науки

Федеральное агентство по образованию РФ

Вологодский государственный технический университет

Кафедра Г и ИГ

Реферат на тему:

Наука античности

Выполнила: студентка

группы ФЭГ-31 факультета

экологии Попова Е.А.

Проверила: ст. преподаватель

Ногина Ж.В.

Вологда 2011

Введение

Возникновение науки

Физика

Математика

Химия

Биология

Этика

Философия

Астрономия

Заключение

Список литературы

Введение

Что такое античная наука? Что такое наука вообще? Каковы основные признаки науки, отличающие ее от других видов материальной и духовной деятельности человека - ремесел, искусства, религии? Удовлетворяет ли этим признакам тот культурно-исторический феномен, который мы называем античной наукой? Если да, то была ли античная, в частности ранняя греческая наука, исторически первой формой науки или у нее были предшественники в странах с более древними культурными традициями - таких, как Египет, Месопотамия и т.д.? Если верно первое предположение, то каковы были преднаучные истоки греческой науки? Если же верно второе, то в каких отношениях находилась греческая наука с наукой своих старших восточных соседей? Имеется ли, наконец, принципиальное различие между античной наукой и наукой Нового времени?

Возникновение науки

По поводу самого понятия науки среди ученых-науковедов наблюдаются весьма большие расхождения. Можно указать две крайние точки зрения, находящиеся в радикальном противоречии друг с другом.

Согласно одной из них, наука в собственном смысле слова родилась в Европе лишь в XVI-XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук - процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу. Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания).

Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков.

Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.

Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания - моделирование механизма природных явлений.

Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.

Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления.

И вот, обратившись к античной науке в период ее наивысших достижений, можем ли мы найти в ней черту, принципиально отличающую ее от науки Нового времени? Да, можем. Несмотря на блестящие успехи античной науки эпохи Евклида и Архимеда, в ней отсутствовал важнейший ингредиент, без которого мы теперь не можем представить себе таких наук, как физика, химия, отчасти биология. Этот ингредиент - экспериментальный метод в том его виде, в каком он был создан творцами науки Нового времени - Галилеем, Бойлем, Ньютоном, Гюйгенсом. Античная наука понимала значение опытного познания, о чем свидетельствует Аристотель, а до него еще Демокрит. Античные ученые умели хорошо наблюдать окружающую природу. Они достигли высокого уровня в технике измерений длин и углов, о чем мы можем судить на основании процедур, разрабатывавшихся ими, например, для выяснения размеров земного шара (Эратосфен), для измерения видимого диска Солнца (Архимед) или для определения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей). Но эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и которое имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение, - такого эксперимента античность еще не знала. Между тем именно такой эксперимент лежит в основе физики и химии - наук, приобретших ведущую роль в естествознании Нового времени. Этим объясняется, почему широкая область физико-химических явлений осталась в античности во власти чисто качественных спекуляций, так и не дождавшись появления адекватного научного метода.

Одним из признаков настоящей науки является ее самоценность, стремление к знанию ради самого знания. Этот признак, однако, отнюдь не исключает возможности практического использования научных открытий. Великая научная революция XVI-XVII вв. заложила теоретические основы для последующего развития промышленного производства, направления нового на использование сил природы в интересах человека. С другой стороны, потребности техники явились в Новое время мощным стимулом научного прогресса. Подобное взаимодействие науки и практики становится с течением времени все более тесным и эффективным. В наше время наука превратилась в важнейшую производительную силу общества.

античная эпоха наука философия

В античную эпоху подобного взаимодействия науки и практики не было. Античная экономика, основанная на использовании ручного труда рабов, не нуждалась в развитии техники. По этой причине греко-римская наука, за немногими исключениями (к которым относится, в частности, инженерная деятельность Архимеда), не имела выходов в практику. С другой стороны, технические достижения античного мира - в области архитектуры, судостроения, военной техники - не находились ни в какой! связи с развитием науки. Отсутствие такого взаимодействия оказалось, в конечном счете, пагубным для античной науки.

Физика

Будучи по своему характеру более синтетической, нежели аналитической наукой, физика древней Греции и эллинистического периода являлась составной частью философии и занималась философской интерпретацией природных явлений. Вследствие этого метод и содержание физики носили качественно иной характер, чем возникшая в результате научной революции XVI и XVII в. в. классическая физика. Начинающаяся математизация физической стороны явлений послужила импульсом к созданию точной научной дисциплины. Однако специфический физический метод, который мог привести к формированию физики как самостоятельной науки, в античный период ещё не сложился. Эксперименты носили спорадический характер и служили более для демонстрации, нежели для получения физических фактов. Тексты, относящиеся к физическим явлениям, в латинском и арабском переводах сохранились приблизительно с 5 века до н.э., большей частью в позднем переложении. Наиболее важные произведения из области физических знаний принадлежат Аристотелю, Теофрасту, Евклиду, Герону, Архимеду, Птолемею и Плинию Старшему. История развития физики в античный период чётко разделяется на четыре периода.

Ионийский период (600-450 до нэ). Собственный практический опыт, а также заимствованный из древних культур привёл к возникновению материалистических идей о сущности и взаимосвязи явлений природы в составе общей науки и натурфилософии. Наиболее выдающимися представителями её были Фалес Милетский, Анаксимандр, Анаксимен, а также Гераклит Эфесский, работы которых содержали довольно скромные, но эмпирически точные сведения из области естествознания. Им были известны, например, свойства сжатия и разжижения воздуха, поднятие вверх нагретого воздуха, сила магнитного притяжения и свойства янтаря. Традиции натурфилософии были продолжены Эмпедоклом из Акраганта, доказавшим вещественность воздуха и создавшего теорию элементов. Левкипп и Демокрит обосновали анатомистическое учение, согласно которому вся множественность вещей зависит от положения, величины и формы составляющих их атомов в пустом пространстве (вакууме). Противниками натурфилософского учения были пифагорейцы с их представлениями о числе как основе всего сущего. Вместе с тем пифагорейцы ввели в Физику понятие меры и числа, развивали математическое учение о гармонии и положили начало основанным на опытах знаниям о зрительных восприятиях (оптика).

Эллинистический период (300 до н.э. - 150 н.э.) Физическое познание достигло своего расцвета. Центром физики стал Александрийский музей, первый настоящий исследовательский институт. Теперь на первый план выступила математическая интерпретация физических явлений; одновременно физика обратилась к постановке и решению практических задач. Физикой занимались либо математики (Евклид, Архимед, Птолемей), либо опытные практики и изобретатели (Ктесибий, Фалон, Герон). Более тесная связь с практикой приводила к физическим экспериментам, однако эксперимент ещё не был основой физических исследований. Наиболее значительная работа велась в это время в области механики. Архимед обосновал статику и гидростатику с математических позиций. Ктесибий, Филон Византийский и Герон обращались прежде всего к решению практических задач, используя при этом механические, гидравлические и пневматические явления. В области оптики Евклид развил теорию отражения, Герон вывел доказательство закона рефлексии, Птолемей экспериментальным путём измерил рефракцию.

Завершающий период (до 600 н.э.) Характеризуется не развитием традиций предшествующих этапов, а стагнацией и начинающимся упадком. Папп Александрийский пытался обобщить достижения в области механики, и лишь некоторые авторы, такие, как Лукреций, Плиний Старший, Витрувий, оставались верными традициям древне-греческой эллинистической науки.

Математика

В эпоху античности уровень развития математики был очень высок. Греки использовали накопленные в Вавилонии и Египте арифметические и геометрические знания, но достоверных данных, позволяющих точно определить их воздействие, а также влияние традиции критомикенской культуры, нет. История математики в Древней Греции, включая эпоху эллинизма, делится, как и физика, на четыре периода.

Ионийский период (600-450 до н.э.). В результате самостоятельного развития, а также на основе определённого запаса знаний, заимствованных у вавилонян и египтян, математика превратилась в особую научную дисциплину, основанную на дедуктивном методе. Согласно античному преданию, именно Фалес положил начало этому процессу. Однако истинная заслуга в создании Математики как науки принадлежит, видимо, Анаксагору и Гиппократу Хиосскому. Демокрит, наблюдая за игрой на музыкальных инструментах, установил, что высота тона звучащей струны изменяется в зависимости от её длины. Исходя из этого, он определил, что интервалы музыкальной гаммы могут быть выражены отношениями простейших целых чисел. Основываясь на анатомической структуре пространства, он вывел формулы для определения объёма конуса и пирамиды. Для математической мысли этого периода было характерно наряду с накоплением элементарных сведений по геометрии наличие зачатков теории двойственности, элементов стереометрии, формирование общей теории делимости и учения о величинах и измерениях.

Афинский период (450 - 300 до нэ). Развиваются специфические греческие математические дисциплины, наиболее значительной из которых было геометрия и алгебра. Целью геометризации математики, в сущности, был поиск решения чисто алгебраических задач (линейные и квадратные уравнения) с помощью наглядных геометрических образов. Он был обусловлен стремлением найти выход из затруднительного положения, в котором оказалась математика, вследствие открытия иррациональных величин. Было опровергнуто утверждение, что соотношения любых математических величин могут быть выражены через отношения целых чисел, т.е. через рациональные величины. Под влиянием сочинений Платона и его учеников Феодор Киренский и Теэтет занимались разработкой проблемы несоизмеримости отрезков, в то время как Евдокс Книдский сформулировал общую теорию отношений, которую можно было применять также и для иррациональных величин.

Эллинистический период (300 - 150 до нэ). В эпоху эллинизма, античная математика достигла высшей степени развития. В течение многих столетий основным центром математических исследований оставался Александрийский Мусейон. Около325 до нэ Евклид написал сочинение "Начала" (13 книг). Будучи последователем Платона он практически не рассматривал прикладные аспекты математики. Им уделял особое внимание Герон Александрийский. Только создание учёными западной Европы в 17 веке новой математики переменных величин оказалось по значению выше того вклада, который Архимед внёс в разработку математических проблем. Он приблизился к анализу бесконечно малых величин. Наряду с широким использованием математики в прикладных целях и применением её для разрешения проблем в области физики и механики вновь обнаружилась тенденция приписывать числа особые, сверхъестественные качества.

Завершающий период (150 - 60 до н.э.). К самостоятельным достижениям римской математики можно отнести лишь создание системы грубо приближенных вычислений и написание нескольких трактатов по геодезии. Наиболее значительный вклад в развитие античной математики на заключительном этапе внёс Диофант. Использовав, видимо, данные египетских и вавилонских математиков, он продолжил разработку методов алгебраических исчислений. Наряду с усилением религиозно-мистического интереса к числам продолжалась также разработка подлинной теории чисел. Этим занимался, в частности, Никомах Герасский. В целом в условиях острого кризиса рабовладельческого способа производства и перехода к феодальной формации в математике наблюдался регресс.

Химия

В древние времена химические знания были тесно связаны с ремесленным производством. Древние обладали познаниями в области извлечения металлов из руд, изготовления стекла и глазури, минеральных, растительных и животных красок, алкогольных напитков, косметических средств, лекарств и ядов. Они умели изготавливать сплавы, имитирующие золото, серебро, жемчуг и "искусственные" драгоценные камни из окрашенной в различные цвета расплавленной стеклянной массы, а также пурпурную краску на основе растительных красителей. Особенно этим славились египетские мастера. Теоретические обобщения, связанные с натурфилософскими рассуждениями о природе бытия, встречаются в трудах греческих философов, в первую очередь у Эмпедокла (учение о 4-х элементах), Левкиппа, Демокрита (учение об атомах) и Аристотеля (квалитативизм). В эллинистическом Египте 3-4 вв нэ прикладная Химия стала развиваться в русле возникшей алхимии, стремившейся к превращению неблагородных металлов в благородные.

Биология

В античную эпоху Биология как самостоятельная наука не существовала. Биологические знания концентрировались прежде всего в религиозных обрядах и медицине. Здесь заметную роль играло учение о 4-х соках. В гилозоизме существовали представления о наличии некой единой первичной формы всего многообразия жизненных проявлений. Вершиной античной биологии явились труды Аристотеля. В рамках его универсальной теологической картины мира энтелехия как активно формирующая сила определяла направление трансформации пассивной материи. В сочинениях Аристотеля нашли своё дальнейшее развитие представления об иерархии вещей, были отображены наблюдения автора о постепенном переходе в природе из неживого в живое, что оказало огромное влияние на последующие теории развития. Перипатетическая школа выдвинула в противоположность материалистическому направлению философии Демокрита своё органическое объяснение природы. Римская биология основывалась на выводах греческой науки и атомизме натурфилософии. Эпикур и его ученик Лукреций последовательно переносили материалистические воззрения на представления о жизни. Античная биология и медицина нашли своё завершение в трудах Галена. Его наблюдения, сделанные во время вскрытия домашних животных и обезьян, сохраняли значение на протяжении многих веков. Средневековая биология опиралась на античную биологию.

Этика

Названием и выделением в особую научную дисциплину Этика обязана Аристотелю, но основы её были заложены ещё Сократом. Первые этические размышления можно встретить уже в изречениях семи мудрецов, разумеется, без философских обоснований. Этико-религиозными вопросами основательно занимались Пифагор и его школа. Антидемократические аристократические позиции пифагорейцев разделяли Гераклит и элеаты. Удовольствия, возникающие из чувств, возбуждений, Демокрит считал сомнительными и относительными. Истинное счастье возникает при ровном и мирном настроении, которое обусловлено едва заметным движение атомов огня. Против отрицания обязательных нравственных норм было направлено учение Сократа о морали. Аристотель видел высшее счастье для каждого отдельного существа в проявлении его природы. Но природа, сущность человека, по Аристотелю, - это его разум, способность употребления разума есть, следовательно, добродетель, и использование разума само по себе приносит удовлетворение и наслаждение. В Риме (за исключением отдельных представителей научной этики - Цицерона, Сенеки, Марка Аврелия) признавалась преимущественно практически ориентированная этика.

Философия

Термин восходит, вероятно, к Гераклиту или Геродоту. Платон и Аристотель впервые стали пользоваться понятием Философия, близким к современному. Эпикур и стоики усматривали в ней не столько теоретическую картину мироздания, сколько всеобщее правило практической жизнедеятельности. Античная философия в целом отличалась созерцательностью, а её представители были, как правило, выходцами из имущих слоёв общества. Существовало два главных течения - материализм и идеализм. Для истории античной философии характерны теоретические расхождения, представленные определёнными школами или же отдельными философами. Такие, например, как противоречие во взглядах на бытие и становление (Перменид и Гераклит), на философию и антропологическую философию, на наслаждение и добродетель или аскетизм, на вопрос о соотношении формы и материи, на необходимость и свободу и другие. Дисциплина мышления, явившаяся результатом возникновения античной философии, стала и важной предпосылкой развития науки вообще. Непреходящей заслугой античной философии, в первую очередь философии материалистической и философии Аристотеля, является всеобъемлющее и систематическое обоснование самой философии как научной теории, развитие системы понятий, а также разработка всех основных философских проблем.

География

География была наукой, в наибольшей степени испытавшей непосредственное воздействие походов Александра Македонского. До этого географический кругозор греков еще не очень отличался от тех представлений об ойкумене, которые были изложены в книгах Геродота. Правда, в IV в. до н.э. путешествия в далекие страны и описания чужих земель становятся более частыми по сравнению с предшествующим столетием. В знаменитом "Аиа-базисе" Ксенофонта содержится много интересных данных по географии и этнографии Малой Азии и Армении. Ктесий Книдский, состоявший в течение 17 лет (415 - 399 гг.) врачом при персидском дворе, написал ряд исторических и географических сочинений, из которых, помимо описания Персии, особой популярностью в древности и в средние века пользовалось описание Индии, содержавшее массу баснословных сведений о природе и жителях этой страны. Позднее (около 330 г. до н.э.) некий Пифей из Массилии предпринял путешествие вдоль западных берегов Европы; миновав Гибралтар и открыв Бретонский выступ, он в конце концов достиг полумифической земли Фуле, которую некоторые исследователи отождествляют с теперешней Исландией, другие же - с Норвегией. Отрывки из сочинения Пифея приведены в трудах Полибия и Страбона.

И все же, когда Александр Македонский начал свои походы, и он, и его полководцы имели лишь очень слабое представление о странах, которые им предстояло завоевать. Армию Александра сопровождали "землемеры" или, точнее, "шагомеры", устанавливавшие, на основе подсчета шагов, пройденные расстояния, составлявшие описание маршрутов и наносившие на карту соответствующие территории. Когда Александр возвращался из Индии, часть войска была им отправлена морем, причем командир флота Неарх получил приказание исследовать береговую полосу Индийского океана. Покинув устье Инда, Неарх благополучно достиг Двуречья и написал отчет об этом плавании, которым позднее пользовались историографы походов Александра Арриаи и Страбон. Данные, накопленные во время походов Александра, позволили ученику Аристотеля Дикеарху из Мессаны составить карту всех известных тогда районов ойкумены.

Представление о шарообразности Земли, окончательно утвердившееся в Греции в эпоху Платона и Аристотеля, поставило перед греческой географией новые принципиальные задачи. Важнейшей из них была задача установления размеров земного шара. И вот Дикеарх предпринял первую попытку решить эту задачу с помощью измерений положения зенита на разных широтах (в районе Лисимахии у Дарданелл и у Ассуана в Египте), причем полученное им значение земной окружности оказалось равным 300 000 стадиев (т.е. около 50 000 км вместо истинного значения 40 000 км). Ширину ойкумены (с севера на юг) Дикеарх определил в 40 000 стадиев, а длину (с запада на восток) - 60 000.

Большой труд Эратосфена "География", состоявший из трех книг, не сохранился, но его содержание, а также полемические замечания к нему Гиппарха довольно полно изложены Страбоном. В первой книге этого сочинения Эратосфен дает очерк истории географии, начиная с древнейших времен. При этом он критически высказывается по поводу географических сведений, приводимых "непогрешимым" Гомером; рассказывает о первых географических картах Анаксимандра и Гекатея; выступает в защиту описания путешествия Пифея, неоднократно высмеивавшегося его современниками. Во второй книге Эратосфен приводит доказательства шарообразности Земли, упоминает о своем методе измерения размеров земного шара и развивает соображения об ойкумене, которую он считал островом, со всех сторон окруженным океаном.

На этом основании он впервые высказал предположение о возможности достичь Индию, плывя из Европы на запад. Третья книга представляла собой подробный комментарий к составленной Эратосфеном карте.

Метод, примененный Эратосфеном для определения окружности Земли, был подробно описан им в специальном сочинении; метод состоял в измерении длины тени, отбрасываемой гномоном в Александрии в тот самый момент, когда в Сиеие (Ассуане), находившейся приблизительно на том же меридиане, Солнце стоит прямо над головой. Угол между вертикалью и направлением на Солнце оказался (в Александрии) равным 1/50 полного круга. Считая расстояние между Александрией и Сиеной равным 5000 стадиев (немного менее 800 км), Эратосфен получил для окружности земного шара приближенное значение 250 000 стадиев. Более точные вычисления дали значение 252 000 стадиев, или 39 690 км, что всего лишь на 310 км отличается от истинной величины. Этот результат Эрастофена оставался непревзойденным вплоть до XVII в.

Астрономия

Знаменитый астроном II в. до н.э. Гиппарх написал сочинение, в котором подверг резкой критике "Географию" Эратосфена. Критика в основном касалась методов локализации географических объектов. Гиппарх считал недопустимым придавать серьезное значение свидетельствам путешественников или моряков об удаленности и ориентации этих объектов; он признавал лишь методы, основанные на точных объективных данных, к которым он относил высоту звезд над горизонтом, длину тени, отбрасываемой гномоном, различия во времени наступления лунных затмений и т.д. Введя в употребление сетку меридианов и параллелей в качестве основы для построенин географических карт, Гиппарх явился основоположником математической картографии.

На примере географии мы видим, что даже эта наука, ранее бывшая чисто описательной, подверглась в александрийскую эпоху процессу математизации. Еще в большей степени этот процесс был характерен для развития астрономии, механики, оптики. Поэтому мы вправе утверждать, что именно в эту эпоху математика, впервые стала призванной царицей наук. А следовательно, прежде чем переходить к другим наукам, целесообразно рассмотреть замечательные достижения эллинистической математики.

Заключение

Изучая развитие наук в период античности, видно, что практически во всех науках принимали активное участие и делали множество открытий и изобретений практически одни и те же люди - Аристотель, Демокрит, Герон, Евклид, Гераклит и многие другие. Это наводит на мысль о взаимосвязи фактически всех существующих на античном этапе наук, когда многие науки ещё не были обособлены и представляли собой ответвления друг от друга. Основой всего была Философия, к ней обращались, из неё исходили и на неё опирались все науки античности. Философская мысль была первоосновой.

Список литературы

1.Асмус В.Ф. Античная философия. - М.: Высшая школа, 1999.

2.Мамардашвили М.К. Лекции по античной философии. - М.: Аграф, 1997.

.Рожанский И.Д. Развитие естествознания в эпоху античности. Ранняя греческая наука о природе - М.: Наука, 1979.

.Щитов.Б.Б., Вронский С.А. Астрономия - это наука. - Изд: Институт Культуры ДонНТУ, 2011.

Контрольная работа на тему:

«Специфика античной науки»


Введение


Термин античность (от лат. Antiquus - древний ) употребляется для обозначения всего, что было связано с греко-римской древностью, от гомеровской Греции до падения Западной Римской империи, возник в эпоху Возрождения. Тогда же появились понятия "античная история", "античная культура", "античное искусство", "античный город" и т.д. Понятие "древнегреческая наука", вероятно, впервые было обосновано П. Таннери в конце XIX в., а понятие "античная наука" - С. Я. Лурье в 30-х годах ХХ века.

Своим появлением наука обязана стремлением человека к повышению производительности своего труда и, в конечном итоге, . Постепенно, еще с доисторических времён накапливались знания о природных явлениях и их взаимосвязи.

Одной из первых наук стала , результатами которой активно пользовались жрецы и священнослужители. В число древних прикладных наук входили - наука о точном измерении площадей, объёмов и расстояний - и . В состав геометрии входила и .

В Древней Греции к VI в. до н. э. сложились наиболее ранние теоретические научные системы, стремившиеся объяснить действительность набором основных положений. В частности, появилась широко распространившаяся на территории Европы система , а философы и создали первую строения вещества, впоследствии развитую . Долгое время наука не была в полной мере отделена от, а была ее . Однако уже древние философы выделяли в составе философии и : системы представлений о происхождении и устройстве мира соответственно.

Один из ярчайших представителей древнегреческой философии является .Проведя огромное количество наблюдений и составив весьма подробное описание своих представлений о физике и биологии, он тем не менее не проводил экспериментов.

До эпохи научных революций считалось, что создаваемые человеком искусственные условия опыта не могут дать результатов, которые бы адекватно описывали явления, происходящие в природе.


Понятие античной науки

Среди ученых-науковедов наблюдаются две крайние точки зрения в самом понятии науки, находящиеся в радикальном противоречии друг с другом.

Первая точка зрения говорит о том, что наука в собственном смысле слова родилась в Европе лишь в XVI-XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук - процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу. Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания).

Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков.

Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы пред вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.

Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания - моделирование механизма природных явлений.

Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.

Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления.



Признаки и специфика античной науки

Существуют четыре основных признака античной науки. Эти признаки также являются признаками ее отличия от ненауки предшествующей истории:

1. Наука, как род деятельности по приобретению новых знаний. Для осуществления такой деятельности необходимы определенные условия: специальная категория людей, средства для ее осуществления и достаточно развитые способы фиксации знаний;

2. Самоценность науки, ее теоретичность, стремление к знанию ради самого знания;

3. Рациональный характер науки, что прежде всего выражается в доказательности ее положений и наличии специальных методов приобретения и проверки знаний;

4. Систематичность (системность) научных знаний, как по предметному полю, так по фазам: от гипотезы до обоснованной теории.

Обратившись к античной науке в период ее наивысших достижений можно найти в ней черту принципиально отличающую ее от науки Нового времени. Несмотря на блестящие успехи античной науки эпохи Евклида и Архимеда, в ней отсутствовал важнейший ингредиент, без которого мы теперь не можем представить себе таких наук, как физика, химия, отчасти биология. Этот ингредиент - экспериментальный метод в том его виде, в каком он был создан творцами науки Нового времени - Галилеем, Бойлем, Ньютоном, Гюйгенсом. Античная наука понимала значение опытного познания, о чем свидетельствует Аристотель, а до него еще Демокрит. Античные ученые умели хорошо наблюдать окружающую природу. Они достигли высокого уровня в технике измерений длин и углов, о чем мы можем судить на основании процедур, разрабатывавшихся ими, например, для выяснения размеров земного шара (Эратосфен), для измерения видимого диска Солнца (Архимед) или для определения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей). Но эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и которое имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение,- такого эксперимента античность еще не знала. Между тем именно такой эксперимент лежит в основе физики и химии - наук, приобретших ведущую роль в естествознании Нового времени. Этим объясняется, почему широкая область физико-химических явлений осталась в античности во власти чисто качественных спекуляций, так и не дождавшись появления адекватного научного метода.

Одним из признаков настоящей науки является ее самоценность, стремление к знанию ради самого знания. Этот признак, однако, отнюдь не исключает возможности практического использования научных открытий. Великая научная революция XVI-XVII вв. заложила теоретические основы для последующего развития промышленного производства, направления нового на использование сил природы в интересах человека. С другой стороны, потребности техники явились в Новое время мощным стимулом научного прогресса. Подобное взаимодействие науки и практики становится с течением времени все более тесным и эффективным. В наше время наука превратилась в важнейшую производительную силу общества.

В античную эпоху подобного взаимодействия науки практики не было. Античная экономика, основанная на использовании ручного труда рабов, не нуждалась в развитии техники. По этой причине греко-римская наука, за немногими исключениями (к которым относится, в частности, инженерная деятельность Архимеда), не имела выходов в практику. С другой стороны, технические достижения античного мира - в области архитектуры, судостроения, военной техники - не находились ни в какой! связи с развитием науки. Отсутствие такого взаимодействия оказалось в конечном счете пагубным для античной науки.


Специфика античной науки на примере математики

В эпоху античности уровень развития математики был очень высок. Греки использовали накопленные в Вавилонии и Египте арифметические и геометрические знания, но достоверных данных, позволяющих точно определить их воздействие, а также влияние традиции критомикенской культуры, нет. История математики в Древней Греции, включая эпоху эллинизма, делится на четыре периода:

- Ионийский период (600-450 до н.э.):

В результате самостоятельного развития, а также на основе определённого запаса знаний, заимствованных у вавилонян и египтян, математика превратилась в особую научную дисциплину, основанную на дедуктивном методе. Согласно античному преданию, именно Фалес положил начало этому процессу. Однако истинная заслуга в создании Математики как науки принадлежит, видимо, Анаксагору и Гиппократу Хиосскому. Демокрит, наблюдая за игрой на музыкальных инструментах, установил, что высота тона звучащей струны изменяется в зависимости от её длины. Исходя из этого, он определил, что интервалы музыкальной гаммы могут быть выражены отношениями простейших целых чисел. Основываясь на анатомической структуре пространства, он вывел формулы для определения объёма конуса и пирамиды. Для математической мысли этого периода было характерно наряду с накоплением элементарных сведений по геометрии наличие зачатков теории двойственности, элементов стереометрии, формирование общей теории делимости и учения о величинах и измерениях;

- Афинский период (450 – 300 до н.э.):

Развиваются специфические греческие математические дисциплины, наиболее значительной из которых были геометрия и алгебра. Целью геометризации математики, в сущности, был поиск решения чисто алгебраических задач (линейные и квадратные уравнения) с помощью наглядных геометрических образов. Он был обусловлен стремлением найти выход из затруднительного положения, в котором оказалась математика, вследствие открытия иррациональных величин. Было опровергнуто утверждение, что соотношения любых математических величин могут быть выражены через отношения целых чисел, т.е. через рациональные величины. Под влиянием сочинений Платона и его учеников Феодор Киренский и Теэтет занимались разработкой проблемы несоизмеримости отрезков, в то время как Евдокс Книдский сформулировал общую теорию отношений, которую можно было применять также и для иррациональных величин;

- Эллинистический период (300 – 150 до н.э.):

В эпоху эллинизма, античная математика достигла высшей степени развития. В течение многих столетий основным центром математических исследований оставался Александрийский Мусейон. Около325 до нэ Евклид написал сочинение «Начала»(13 книг). Будучи последователем Платона он практически не рассматривал прикладные аспекты математики. Им уделял особое внимание Герон Александрийский. Только создание учёными западной Европы в 17 веке новой математики переменных величин оказалось по значению выше того вклада, который Архимед внёс в разработку математических проблем. Он приблизился к анализу бесконечно малых величин. Наряду с широким использованием математики в прикладных целях и применением её для разрешения проблем в области физики и механики вновь обнаружилась тенденция приписывать числа особые, сверхъестественные качества.

- Завершающий период (150 – 60 до н.э.):

К самостоятельным достижениям римской математики можно отнести лишь создание системы грубо приближенных вычислений и написание нескольких трактатов по геодезии. Наиболее значительный вклад в развитие античной математики на заключительном этапе внёс Диофант. Использовав, видимо, данные египетских и вавилонских математиков, он продолжил разработку методов алгебраических исчислений. Наряду с усилением религиозно-мистического интереса к числам продолжалась также разработка подлинной теории чисел. Этим занимался, в частности, Никомах Герасский. В целом в условиях острого кризиса рабовладельческого способа производства и перехода к феодальной формации в математике наблюдался регресс.


Заключение

Изучая специфику науки в период античности, я пришел к выводу, что античные научные воззрения имели существенную гуманитарную составляющую как по форме, так и по содержанию. Научные труды облекались в форму литературных произведений, носили отпечаток мифологичности, романтизма, мечтаний. В античном мире возникали умозрительные построения, догадки, идеи, получившие развитие в более позднее время. К таким идеям можно отнести, например, гипотезу о гелиоцентрическом устройстве мира, атомизм. Возникла традиция научных школ, первыми из которых были Академия Платона и Ликей Аристотеля.

В период античности наука возникает как обособленная сфера духовной культуры. Появляется особая группа людей, специализирующихся на получении новых знаний, знания становятся системными, теоретичными и рациональными. Естественные науки существовали в форме натурфилософии, неотделимой от философии. Ученые античного мира были энциклопедистами, носителями как гуманитарных, так и естественнонаучных знаний. Экспериментальная база естественных наук была крайне ограничена. В методологическом плане важным достижением античности является создание дедуктивного метода исследований, закрепленного в наиболее законченном виде в «Логике» Аристотеля, и аксиоматического метода изложения научных теорий, использованного впервые в «Началах» Евклида. Формальная логика Аристотеля, обогащенная новыми правилами, называется сейчас традиционной. На ее основе возникла математическая логика. Как междисциплинарная наука формируется математика, используемая при решении как научных, так и прикладных задач.


Список использованной литературы

1. « » (

2. Античная наука ( , издательство: академический проект, 2008);

5. « История философии. Учебное пособие. Гриф МО РФ» (Автор: Сизов В.С., 2008).

АКАДЕМИЯ – философская школа Платона, открытая им в сорокалетнем возрасте в Афинах в 387 г. до н.э. в помещении «гимнасии», расположенной в роще, посаженной в честь героя Академа, отчего и получила впоследствии своё название – Академия. Здесь стали собираться талантливые люди, которых Платон соединил как «священное братство», почитавшее Музы и Аполлона. Цель Академии – Платон видел в том, чтобы через определённым образом организованное знание формировать людей нового типа, способных обновить государство, ибо знание – облагораживает людей, а через людей – общество и государство. В Академию принимали практически всех желающих. Часть его учеников пришла в Академию для изучения наук, другая, боль­шая часть – для получения общего образования, преж­де всего для подготовки к политической деятельности. Впоследствии Академия стала крупным очагом развития греческой математики. Из его школы вышли Февдий из Магнесии, автор учебника по математике и Архит – создатель научной механики. Здесь учился выдающийся астроном и географ Эфдокс, который разработал новый метод математического анализа, дал своё определение пропорциональности, выдвинул гипотезу о шарообразности Земли и попытался вычислить длину её окружности. В годы старости Платона, когда произошло его сбли­жение с пифагорейцами и с развивавшимся ими мате­матическим естествознанием. Еще при жизни Платон сам назначил себе преемни­ка по руководству Академией. Преемником этим стал его ученик, сын его сестры Спевсипп (407-399 гг. до н.э.). В ряде вопросов Спевсипп отклонялся от учения Платона, прежде всего в учении о Благе и об «идеях». В сущности Спевсипп был скорее пифагорейцем, чем платоником. Учение Платона об «идеях» он отри­цал, заменив «идеи» «числами» пифагорейцев. Однако и «числа» он понимал не столько в платоновском – философском, онтологическом – смысле, сколько в смыс­ле математическом. Он сближал Мировой ум Плато­на не только с Душой, но и с Космосом. Он даже начал борьбу с Платоном и платоновским дуализмом – в тео­рии познания. Начиная со Спевсиппа, в платоновскую Академию проникает скептицизм. Приблизился к пифагорей­цам и его ученик Ксенократ, который стоял во главе Ака­демии в течение 25 лет (339-314 гг. до н.э.) и был главным пред­ставителем школы, одним из самых плодовитых ее писателей. Ему принадлежит разделение всей филосо­фии на области диалектики, физики и этики. Мировую душу он определял как самодвижущееся число. Он присоеди­нил к физическим элементам эфир и утверждал, что элементы состоят из мельчайших телец.

АНТИЧНАЯ НАУКА – этап развития науки с VI в. до н.э. до VI в.н.э.). Древняя Греция является прародительницей науки (здесь впервые появляются научные школы – милетская, пифагорейский союз, элейская, ликей, сады и др.). Учёные были одновременно и философами. Возникшая наука о природе была натурфилософией, исполняя роль «науки наук» (была вместилищем всех человеческих знаний об окружающем мире, а естественные науки были только её составной частью). Этот этап развития науки характеризовался: 1) попыткой целостного охвата и объяснения действительности; 2) созданием умозрительных конструкций (не связанных с практическими задачами); 3) вплоть до XIX в. отсутствием дифференцированостью наук (только в XVIII в. самостоятельными областями науки стали механика, математика, астрономия и физика; химия, биология и геология – только начали формироваться); 4) отрывчатостью знаний об объектах природы (оставалось место для вымышленных связей). Античная натурфилософия прошла несколько этапов в своём развитии: ионийский, афинский, эллинистический, римский. Развитие науки в античном мире, как обособленной сферы духовной культуры было связано с появлением людей, которые специализировались на получении новых знаний. Естественные науки существуют и развиваются неотделимо от философии в форме натурфилософии, знания носят умозрительный (рациональный) и теоретический характер. Экспериментальная база наук практически отсутствует. Методологической основой античности является создание дедуктивного метода исследований («Логика» Аристотеля) и аксиоматического метода изложения научных теорий («Начала» Эвклида). В античной науке формируются умозрительные догадки, обоснованные в более поздние времена: атомизм, гелиоцентрическое устройство мира и др. Формируются традиции научных школ, основными долгожителями которых являются Академия Платона и Ликей Аристотеля. Огромное значение для развития науки имело возникновение письменности на основе более совершенного, нежели древневосточный папирус, писчий материал – пергамент. Возникают библиотеки, крупнейшей из которых была Александрийская библиотека. Письменность входит в повседневный быт и процесс обучения. Научные труды античности были оформлены в форме литературных произведений, то есть имели гуманитарную составляющую. Основными заказчиками научных исследований являются правители, используя их в основном для военных целей. Зарождается техника: строительное дело (благоустройство городов требовало создание системы водоснабжения и канализации, строительство бань, цирков, театров), механика, промышленное производство металлов способствовало изготовлению инструментов и оружия. На этой основе формируется знание в области химии.

АРИСТОТЕЛЬ (384-322 гг. дон. э.) – древнегреческий фило­соф и ученый-энциклопедист, родившийся в Стагире. Его отец Никомах – придворный лекарь македон­ского царя. В 17 лет будущий философ становится учени­ком Платона,а в 343 г. до н.э. он становится учителем Александра Македонского. После 30 лет странствий возвращается в Афины и основывает в Ликее собственную школу – перипатетическую (от греч. «прогуливающиеся»). После смерти Александра Македонского обвинён в безбожии, вынужден бежать в Халкиду, где вскоре умер. Аристотель – автор самой обширной философской и научной системы античности, напи­савший более 150 научных трудов, главный из которых – «Метафизика». Ядром философии он считал онтологию – уче­ние о сущем. Основа сущего – первая материя. Она принци­пиально неопределима, бесформенна и является лишь потен­циальной предпосылкой бытия. Первоматерия разлагается на четыре элемента: огонь, воздух, воду и землю. Любая чувственно воспринимаемая вещь представляет со­бой результат соединения материи и формы как ее (вещи) образа, идеи. Действительность – единство телесного (ма­териального) и идеального (формообразующего). Источник движения усматривал в перводвигателе (идея Бога). В учении о мире он выделяет четыре основных вида мировой причинности, благодаря которой все существует: материальную, формальную, действующую и телеологическую («целевую»). Логика Аристотеля – одновременно и теория познания. Он сформулировал три основных логических закона: закон тождества, закон противоречия и закон исключённого третьего. Он утверждал, что душа присуща всем предметам живой природы. Имеются три различных уровня души: растительный (души растений), чувственный (души животных) и разумный (ду­ша человека). Познание он рассматривал как процесс все более глубокого постижения бытия и выделял следующие ступени познания: ощущение, представления, опыт, искусство и наука. Человек – гражданин государства, «политическое животное». Идеалом философа было госу­дарство, опирающееся на частную собственность, моральные добродетели и рабов.

АФИНСКИЙ ЭТАП АНТИЧНОЙ НАТУРФИЛОСОФИИ – расцвет древнегреческой философии науки в V-IV вв. до н.э. Связан с созданием первых классический философских систем объективного идеализма Платона и дуализма Аристотеля, а также атомистического учения Левкиппа и Демокрита. Основные принципы атомистики: 1) Вселенная состоит из мельчайших материальных частиц (атомов) и пустоты; 2) атомы вечны, неуничтожимы, а значит, Вселенная существует вечно; 3) атомы неизменны, непроницаемы и неделимы – они являются «кирпичиками мироздания»; 4) атомы находятся в постоянном движении, изменяя своё положение в пространстве; 5) атомы различны по форме и величине, но недоступны органам чувств человека; 6) предметы – это сочетания атомов различной формы и порядка их соединения. На этом этапе огромная роль принадлежит Аристотелю, как систематизатору древней науки. Он создал первую классификацию наук, разделив их на теоретические, практические и творческие, а по предмету исследования – на философию и частные науки. Естественнонаучные интересы Аристотеля были связаны с математикой, физикой, астрономией и биологией. Он описал несколько сотен различных животных. Аристотель – основатель формальной логики (силлогистики). Теоретические науки он разделил на три части: 1) «первую философию» (позднее названную метафизикой), которую посвятил умозрительному постижению высших начал всего существующего; 2) математику, которая изучает взятые в абстракции числовые и пространственные свойства; 3) физику, изучающую различные состояния тел в природе. В истории науки он известен как создатель космологического учения, положенного в основу геоцентрической концепции мира: земля – центр Вселенной и имеет форму шара; мир делится на две части – область земли и область неба; область земли состоит из четырёх стихий – земли, воды, воздуха и огня, а область неба – имеет ещё и пятый элемент – эфир, из которого состоят все небесные тела; самые совершенные из них – неподвижные звёзды, состоящие из чистого эфира. Аристотель считал мироздание конечным. Оно завершается твёрдыми, кристально прозрачными сферами, за которыми располагается перводвигатель Вселенной – нематериальный разум мирового масштаба. Его космология впоследствии математически была оформлена Птолемеем.

ГЕНЕЗИС НАУКИ – дискуссионная проблема в истории науки, связанная с выявлением исторических условий формирования науки, в решении которой сложилось два противоположных подхода (экстернализм и интернализм) и четыре основных версий её возникновения. С точки зрения эстернализма (от лат. extro – вне) появление науки обусловлено полностью внешними для неё обстоятельствами: социальными, экономическими и др.), поэтому основная задача изучения науки сводится к реконструкции социальных условий научно-познавательной деятельности на определённых этапах её развития. Интернализм (от лат. intro – внутри) основным фактором развития науки рассматривает сложившиеся на определённом этапе развития науки способы решения научных проблем (парадигмы), методологические программы, соотношения традиций и новаций, т.е. факторы, связанные с внутренней природой научного знания, поэтому основной задачей изучения науки является описание познавательных процессов. К основным версиям происхождения науки относят. 1) Начало науки, связанное с цивилизацией Древнего Египта (IV тыс. до н.э.), когда ограниченная группа людей (посвящённые), располагала глубокими знаниями в области математики, медицины, географии, астрономии, химии и др., считая их тайными и магическими, оказав сильное влияние на развитие человеческих знаний и, особенно, в Индии, Персии, Китае, Греции, Риме. 2) Наука возникла в античной Греции в VI в. до н.э. где первые философы были одновременно и учёными, их основной интерес был связан с рациональным объяснением устройства мироздания, а личностно-образная форма мифа была заменена безличностно-понятийной формой философии (олицетворение уступает место абстракции), большое внимание уделяется системе доказательств, что позволило перейти к рациональному мышлению, как началу научного познания. 3) Наука возникла в позднем средневековье (в культуре Западной Европы в XII-XIV вв.) и была связана с деятельностью английского епископа Роберта Гроссетеста и английского монаха Роджера Бэкона, которые утверждали необходимость опытного познания природы и перехода к индукции как метода познания. 4) Рождение науки в современном смысле слова датируется Новым временем (XVI-XVII вв.) и связано с именами Коперника (коперниковский переворот), Галилея и Ньютона, создавших научную картину мира, основанную на законах классической механики.

ГЕРАКЛИТ ЭФЕССКИЙ (ок. 544 г. – ок. 483 г. до н.э.) – древнегреческий философ, основоположник первой формы диалектики. При­надлежал к аристократическому роду, за глубокомыслие своего учения прозван «тёмным», а за свою трагическую серьёзность – «плачущим философом». Отстаивал идею, что мир не создан никем из богов и никем из людей, а всегда был, есть и будет вечным живым огнём, закономерно воспламеняющимся и закономерно угасающим. Из всемогущего божественного первоогня, который является чистым разумом, логосом, путём раскола и борьбы произошло множество вещей; согласие и мир ведут к оцепенению, которое вновь превращается в единство первоогня. В этом проявляется вечное движение. Ему приписывают известный афоризм «всё течёт – всё изменяется». Всё течёт, но в этом течении господствует логос как закон, который познают лишь немногие. Во всём объединены противоположности, и, тем не менее, существует скрытая гармония. Мудрость – это познание разума, логоса, господствующего во всём. Только подчиняясь законам разума, которые выражаются в устройстве природы и в устройстве государства, человек приобретает душевную ясность и высшее счастье.

ДЕМОКРИТ (ок. 460 г. – ок. 371 г. до н.э.) – круп­нейший древнегреческий ученый-энци­клопедист, философ, автор около 70 работ, большая часть которых утрачена. Демокрит построил первую целостную философскую систе­му, включавшую учение об атомарности бытия, теорию по­знания, учение о происхождении космоса, о душе, этику. Демокрит – основоположник атомистического материализма, признавал наличие двух первоначал: атомов и пустоты. Пустоту представлял как вакуум (бесконечное пространство), где движется бесконечное количество атомов, составляющих бытие (т.е. физический мир). Атомы бесконечно малы (отсюда и название «атомос» – неделимый), непроницаемы, различны по форме и величине. Различия между предметами вызваны комбинациями атомов различной конфигурации. Атомы изначальны и вечны, как изначально и вечно движение. Демокрит разграничил в познании чувственную и рас­судочную стороны. Чувственное познание он объяснял исте­чением атомов из воспринимаемых объектов (атомы дости­гают человеческих органов чувств). Эта сторона познания неполна и недостоверна, так как истинная природа вещей (атомы) может быть постигнута только с помощью мыш­ления, рассудка. Демокрит отвергал случайность: случай­ным нам кажется лишь то, причины чего нам неизвестны. Познание, согласно Демокриту, есть постижение причин событий, и оно дороже для мудреца, нежели обретение царской власти над персами. Демокрит придерживался идеи множественности миров и их неоднородности: в иных нет ни Луны, ни Солнца, в иных подобные светила многочисленны; миры находятся на раз­личной стадии развития – одни только возникают в виде атомарных вихрей, другие уже пребывают в расцвете, третьи гибнут, сталкиваясь друг с другом. Философ отграничил живое от неживого, введя представление об одушевлен­ности. Душа атомарна по своему строению, ее атомы име­ют сферическую форму и огненную природу. Человеческая душа отличается тем, что ее атомы чередуются с атома­ми тела. Демокрит проводил аналогию между человеческим организмом и космосом, а применительно к человеку он впер­вые употребил слово «микрокосм». Человеческая душа, утверждал мыслитель, смертна, хотя образующие ее атомы вечны: тело умирает, а атомы души рассеиваются в прост­ранстве. Не вечны и боги: круглые огненные атомы их души соединены весьма устойчиво, но и они способны рассеяться. Боги могут влиять на человека благотворно или зловредно, подавать ему знаки. Наилучшей формой государственного устройства Демо­крит считал народовластие (демократию), которое сохра­няется только благодаря высоким нравственным качествам граждан. Эти качества, полагал он, возникают и укрепляют­ся в процессе воспитания и обучения. Цель человеческой жизни – доброе расположение духа, при котором человек не подвластен действию страстей и страха.

ДРЕВНЕРИМСКИЙ ПЕРИОД АНТИЧНОЙ НАТУРФИЛОСОФИИ – развитие западноевропейской науки на территории Римской империи с I в. до н.э.-VI в.н.э. Этот период связан с именами Тита Лукреция Кара (I в.до н.э.) автора известной поэмы «О природе вещей», Клавдия Птолемея (прибл. 90-168 гг. н.э.), автора труда «Математическая система», определившего развитие астрономии более чем на тысячу лет, где он математически описывает систему мироздания: в центре Вселенной – Земля, далее – Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн. Чем ближе к Земле, тем быстрее движется планета. Учение Птолемея было основано на аксиомах движения и на теории пространства Платона и Аристотеля (Земля шарообразна, неподвижна, находится в центре небосвода, имеющего сферическую форму, и вращается как твёрдая сфера; вокруг Земли обращаются за одни сутки планеты по круговым орбитам с постоянной скоростью; небесная твердь находится за орбитами планет, далее – «небовод», ещё дальше – «перводвигатель», а на самом краю – «обиталище блаженных душ»). Птолемей доказывал неподвижность Земли на основе учения Аристотеля, согласно которому более тяжёлое тело падает быстрее, чем лёгкое. Земля, вследствие своей огромной массы, определяет движение всех тел, находящихся на ней. Заслуга Птолемея в создании математической модели движения планет: движется не сама планета, а центр другой окружности. Объяснение петлеобразного движения планет было предложено Гиппархом (II в. до н.э.) на основе теории наложения двух круговых движений, которую Птолемей математически обосновал, водя дополнительные окружности, описывающие сложное движение планет. Система Птолемея была громоздкой, но позволяла достаточно точно вычислять движение планет. В числовых пропорциях, которые наблюдаются в музыке и акустике, он вслед за Пифагором (а за ним и Платон) увидел существование универсальных математических структур. Технические достижения римского периода античности представлены сочинением Витрувия Поллиона (50 г. до н.э.-20 г. н.э.) « Об архитектуре», который в молодости сопровождал Юлия Цезаря в его походах в качестве военного инженера, а в старости занимался строительством. Его сочинение состояло из 10 книг, разделяясь на три части: сооружение зданий, производство часов и строительство машин, где описываются машины для поднятия тяжести, водоснабжения и орошения полей, водяные мельницы). Особое место в сочинении уделялось проблемам акустики, а распространение звука рассматривалось как волновой процесс. В Древнем Риме развивалась география. Энциклопедией географических знаний этого периода является 17-томный труд «География» Страбона (63 г. до н.э., 23 г. н.э.).

ЗЕНОН ЭЛЕЙСКИЙ (ок. 490-430 гг. до н.э.) – древне­греческий философ, апории которогооказали огромное воздействие на всю последующую историю философии и математики. В своих взглядах Зенонподчер­кивал противоречие между чувст­вами и разумом. Мир, как он дан нашим чувствам, имеет изменчивый, множественный, разнокачественный характер, между тем как в мышле­нии он предстает единым, неподвиж­ным и целостным. Он доказы­вал это с помощью апорий – неразрешимо противоречивых ситуаций, к которым мы приходим, если мыслим движение и множественность. Наиболее известны апории «Дихото­мия» (деление пополам) и «Ахиллес». Согласно первой движение не может ни начаться, ни закончиться. Чтобы достичь цели, движущийся предмет должен пройти сначала половину пути, но до этого – четверть, а до этого восьмую долю – и так до бесконечности. В апории «Ахиллес» доказывается, что самый быстрый из людей никогда не догонит самое медленное существо, отправившееся в путь раньше. Чтобы догнать черепаху, Ахиллес должен преодолеть расстояние от своего места до черепахи, но за этот промежуток времени, как бы он ни был мал, черепаха продвинется еще, и ситуация будет повторяться снова и снова.

ИОНИЙСКИЙ ЭТАП АНТИЧНОЙ НАТУРФИЛОСОФИИ – становление античной философии и науки в VI-V вв. до н.э. Этот этап связан с формированием первых философских школ: милетской школой, пифагорейским союзом, Гераклитом Эфесским и основан на их представлениях о «стихиях», как основаниях космоса – воде, огне, числе и пр. Понятие «космос» означало порядок и было проекцией живой природы или человеческого общества, а не самостоятельной сущностью. Вселенная наделялась качествами живых существ и изображалось в виде огромного человекоподобного организма (а космос рассматривался как макрочеловека, а человек как микрокосм). Такой взгляд приводил к слиянию человека со Вселенной, микрокосмоса с макркосмосом, то есть человек выступал как часть всеобщего космического порядка и в нём воплощались все силы и стихии, которые образует космос. Описание мира представлялось как порождение какого то первоначала, как царство стихий. Анаксимандр (представитель милетской школы) создал первую общекосмологическую картину мира: земля – центр Вселенной, её опоясывает три огненных кольца – солнечное, лунное и звёздное, которые покрыты воздушной оболочкой, земля сферична и «плавает» в мировом пространстве.

ЛИКЕЙ – философская школа Аристотеля, открытая в Афинах, учеников которой прозвали перипатетиками, то есть «прохаживаю­щимися», за то, что они имели обыкновение прохажи­ваться вслед за Аристотелем в саду Ликея во время занятий или лекций. Местом для нее был избран в одном из предместий города гимнасий, примыкавший к храму Аполлона Ликейского. По про­звищу этого храма – Ликейский – школа Аристотеля получила название Ликея. Обучение в Ликее имело двоякую форму: «эксотерическую» (или преподавание риторики, доступное для всех) и «акроэтическую», или «эсотерическую» (для под­готовленных, где в обучение входила метафизика, физика и диалектика). Ликей Аристотеля был не только школой, но также и кругом лиц, связанных между собой тесными узами дружбы. Преемником Аристотеля по руководству школой стал его ученик и друг Теофраст, скончавшийся в возрасте 85 лет в 288 г. до н.э. Он был не только крупный философ, но и ученый. Аристо­тель положил своими работами начало научному изуче­нию животного мира, Теофраст положил такое же начало изучению мира растений, В философии он зани­мался самостоятельным исследованием некоторых проб­лем логики. Из личных учеников Аристотеля выделились Евдем из Родоса и Аристоксен из Тарента. Первый из них выдвинулся своими учеными работами в области исто­рии, оставаясь в них верным взглядам учителя. Аристоксен известен своим учением о музыкальной гармонии. Не только в теории музыки, но и в этике он соединил аристотелизм с пифагореизмом. Ряд последующих перипатетиков были больше уче­ными специалистами и литераторами, чем философами. Зато крупным философом Ликея был Стратон из Лампсака, стоявший в Афинах во главе Ликея в тече­ние 18 лет (287-269 гг. до н.э.). В его лице в Ликее возобладало натуралистическое направление, переходящее в ряде случаев в прямой материализм. Он не только находил необходимым вносить поправки в учение Аристотеля по отдельным вопросам, но выступил против основных дуалистических и идеалистических элементов его учения.

ЛУКРЕЦИЙ КАР (около 96 г. до н.э.- 55 г н.э., кончил жизнь самоубийством), полное имя Тит Лукреций Кар, римский поэт и философ, автор незаконченной поэмы «О природе вещей», изданной Цицероном, где Лукреций рассматривает возникновение мира на основе взглядов Эпикура, отстаивает идею строгой причинности и фатализма. Его учение основано на следующий положениях. Ничто не возникает из ничего и в ничто не обращается. Вселенная является огром­ным, но конечным пространством, заполненным пустотой (вакуумом) и неуничтожимой материей (атомами). Атомы различаются по форме, размеру и весу и являются твердыми неуничтожимыми, вечными телами. Все вещи состоят из движущихся атомов, разделенных большим или меньшим ко­личеством пустоты, что и определяет форму ве­щей. Любое изменение может быть объяснено из­менением числа или положения атомов. Душа состоит из невероятно малых и тончайших атомов, рождается и растет вместе с телом, а после смерти тела «рассеивается как дым». Хотя боги и существуют, они не управляют и не воздействуют на мир. Будучи системами из тончайших атомов, они обитают отдельно от мира и являются вопло­щением человеческого счастья. Люди чувствуют и реагируют на воспринятое по определенным правилам. Несмотря на то, что чувства обмануть нельзя, разум может сделать неправильный вывод из правильных ощущений. Объекты можно уви­деть, поскольку они излучают со своей поверхнос­ти особые формы, которые воспринимаются гла­зом, как запах носом. Люди по природе своей ищут удовольствий и стремятся избегать боли. Их целью должно быть приведение жизней в соответ­ствие с балансом максимального удовольствия и минимальной боли. Достичь этого люди могут лишь преодолев, при помощи философии, свой страх перед смертью и богами.

МЕДИЦИНСКАЯ ШКОЛА ГИППОКРАТА – самая известная медицинская школа античности, основанная в V в. до н.э. на острове Кос. Гиппократ (460-370 гг. до н.э.) придал медицине статус науки, используя точный метод. Манифестом анатомии медицинской науки считается работа Гиппократа «О древней медицине». Если египтяне своими достижениями только предвосхитили медицину как науку, то искусство лечения больных в школе Гиппократа стало наукой благодаря методу, за которым стояло стремлении к естественному объяснению каждого явления, поиску его первопричины. Гиппократ требовал от врачей объективного наблюдения за больными систематического и организованного описания различных заболеваний и рассмотрении человека как конкретного физического существа. Свой метод рационального упорядочивания фактов он взял у греческих философов. Клятва Гиппократа, где определены знания, ценности, идеалы медицинской науки, стала её парадигмой, которая действенна и актуальна по сегодняшний день.

Клятва Гиппократа

Клянусь... что буду оставаться верным этой клятве... во всех сво­их суждениях, и отдавать этому все свои силы...

Употреблю все свои силы для помощи больным и воспрепятствую несправедливости и нанесению вреда. Никому не поднесу лекарст­ва смертоносного, даже если о том попросят, также не дам такого со­вета другому, не допущу и беременных женщин до аборта.

Сохраню в чистоте и святости мою жизнь и мое искусство. Не стану оперировать страдающего каменнопочечной болезнью, но предос­тавлю это искушенным практикам.

Во всех случаях иду на помощь больному, остерегаясь вреда и не­справедливости, в особенности, возбуждения похоти в телах муж­чин и женщин, свободных или рабов.

А ежели доведется услышать и увидеть по долгу профессии или вне ее в моих отношениях с людьми нечто, что не подлежит разгла­шению, о том сохраню молчание, и как священную тайну уберегу.

И если сохраню верность этой клятве и не унижусь, пусть мне ниспошлется лучшее из этой жизни - искусство и вечная честь. Ес­ли же нарушу клятву, да буду покрыт бесчестием и позором.

Крупнейший врач IV в. до н.э. Диокл из Каристауказывал на необходимость правильного распорядка дня для сохранения здоровья, применительно к тому или ино­му времени года, а также говорил о правилах гигиены тела, диеты, предпоч­тительной организации досуга. Существенный вклад в развитие анатомии и физиологии внес римский врач Гален(129-200) – сначала бывший хирургом в школе гладиаторов, а затем в течение многих лет личным врачом императора Марка Аврелия. Наследие Галена насчитывает несколько тысяч страниц. Наиболее значительные его работы – «Анатомические процессы», «Естественные способности», «Учебное руководство по медицине», «Комментарий к Гиппократу», «Терапевтический метод». Невежество врача, по его мнению, состоит в небрежном от­ношении к своим обязанностям, ненасытной жажде денег, ле­ни и праздности духа. Истинный медик должен быть одновременно и философом, сочетая в своей работе эксперимен­тальный метод с логическим. Гален систематизировалпредставле­ние античной медицины в виде единого учения.

МИЛЕТСКАЯ ШКОЛА – условное обозначение первых древнегреческих естествоиспытателей и натурфи­лософов (Фалеса, Анаксимандра и Анаксимена), проживающих в Милетах в VI в. до н.э. до 494 до н.э. Зани­маясь астрономией (в том числе навигационной) и геогра­фией (в том числе картографией), математикой и метеороло­гией, представители Милетской школы создали в результате первую не-мифологическую картину мира. Первым в числе Милетский философов был Фалес. Будучи купцом, использовал торговые поездки для расширения научных знаний. Он был гидроинженером, изобретателем астрономических приборов, предсказал солнечное затмение. Свои познания связал в стройные философские представления о мире, утверждая, что всё существующее возникло из воды. Земля держится на воде. Всё, происходящее из воды, не лишено одушевлённости. Он утверждал, что ближе всего к Земле находится небо неподвижных звёзд, а дальше всего – Солнце. Анаксимандр – младший современник Фалеса, признавал единым и постоянным источником рождения всех вещей – первовещество – апейрон, из которого обособляются противоположности тёплого и холодного, дающее начало всем веществам: первоначально возникла огненная оболочка, облекшая воздух над Землёй. Притекающий воздух прорвал огненную оболочку и образовал три кольца, внутри которых оказалось некоторое количество прорвавшегося наружу огня. Так образовалось три круга: круг звёзд, Солнца и Луны. Животные и люди появились из отложений высохшего морского дна и изменили свою форму при переходе на сушу. Мир не вечен. После его разрушения выделяется новый мир. Смене миров нет конца. Последний в ряду Милетских философов – Анаксимен. В качестве первовещества он принимает воздух. Он обосновал новую идею о процессе разряжения и сгущения, посредством которого из воздуха образуются все вещества. Воздух – это дыхание, обнимающее весь мир. Земля – плоский диск, парящий в воздухе.

ПИФАГОР (580-500 гг. до н.э.) – древнегреческий философ, математик, астроном с острова Самос. Со­гласно античным источникам, под­линные сочинения отсутствуют. Предание сообщает, что Пифагор учился в Милете, совершил путе­шествие на Восток – в Вавилон, Египет, Индию, где изучал негре­ческие религии, математику и астрономию; в 532 г. до н.э. бежал от тирании Поликрата в Кротон (юг Италии) и там основал рели­гиозный братский союз с общим имуществом и собственным риту­альным уставом. Пифагорейский союз захватил власть в Кротоне и распространил свое влияние по всей Южной Италии. Однако власть эта пала в результате антипифаго­рейского восстания, Пифагор вынужден был бежать в Метапонт, где и умер. Согласно Пифагору числа и принципы математики одновременно являются и принципами мира, а числовые отношения, пропорции отражают гармонию самого мира. Мир называется «космосом» в силу господства в нём порядка и гармонии. По учению Пифагора, небесные тела «звучат» через определённые интервалы (гармония сфер), но эту гармонию мы не воспринимаем потому, что она воздействует на нас непрерывно. Пифагор проповедовал бессмертие души, раз­вивал идею переселения душ после смерти в иные, новые тела и сам якобы помнил четыре прежних воплощения. Философ учил также о всеобщем родстве живых существ и требовал «очищения» тела вегетарианством, а души – че­рез познание музыкально-числового строения Космоса.

ПИФАГОРЕЙСКИЙ СОЮЗ – древнегреческая философская школа, основанная Пифагором около 525 года до н.э. и прекратила своё существование приблизительно в середине IV века до н.э. Наследие школы выражается в следующих положениях: 1) «все есть число», что означает – все явления могут быть, в конечном счете, сведены к числовым отношениям; 2) на самом глубоком уровне реальность имеет математическую природу; 3) взгляд на душу как на самодвижущееся число, которое претерпевает последовательную реинкарнацию различных физических оболочках до своего окончательного очищения путём духовного образа жизни; 4) душа способна возвыситься до единения с Богом; 5) философия может использоваться для духовного очищения. Впоследствии пифагорейский союз применил концепцию числовых взаимосвязей по отношению к музыке, акустике, геометрии и астрономии; определил мозг как центр души и создал комплекс тайных культовых практик. Пифагореизм оказал огромное влияние на астрологию своей идеей о том, что числовая гармония Вселенной воздействует на человеческую деятельность. Астрономические концепции союза стали фундаментом гипотезы Коперника о том, что Земля и другие планеты вра­щаются по орбитам вокруг Солнца.

ПЛАТОН АФИНСКИЙ (427 г. до н.э. – 347 г. до н.э.), древнегреческий философ, создатель первой в ев­ропейской культуре целостной и системной фило­софской концепции. Настоящее имя – Аристокл. Принадлежал к афинской рабовладельческой аристократии. По линии отца – отдаленный потомок аттического царя Кодра, по линии матери - брата афинского законодателя Солона. В молодости был слуша­телем кружка последователя Ге­раклита – Кратила, где познако­мился с принципами диалектики. Писал стихи. Выступал на спортивных состязаниях. Встре­тившись с Сократом, стал его верным учеником. Осужде­ние и смерть Сократа стали для Платона духовным потря­сением. Он совершил путешествие в Южную Италию и на Сицилию. Пытался реализовать свои социальные идеи под руководством тирана Сиракуз Дионисия Старшего, но потерпел неудачу: последний выдал его как военнопленного Спарте. Друзья выкупили Платона из плена, и он начал вести в Афинах интенсивную творческую работу, основал собственную школу – Академию. Затем снова отправил­ся в путешествие, вновь надеялся осуществить свои поли­тические замыслы, но окончательно потерпел поражение. Вернулся в Афины, где умер в возрасте 80 лет. Наследие Платона включает 34 диалога (главный герой большинства из них – Сократ, беседующий со своими учени­ками), среди которых наиболее известны «Пир», «Федон», «Федр», «Государство». Ядром его философской системы является концепция мира идей – эйдосов (идея – вид, образ). Согласно Платону, реальный, чувственно воспринимае­мый мир является иллюзорным, кажущимся. В нем нет ничего устойчивого, все изменчиво, подвержено рождению и гибели. Это связано с тем, что чувственная действительность находится «в зазоре» между миром идей, олицетворяющих подлинное, настоящее бытие, и материей, олицетворяющей несущественное, суетное, неподлинное бытие, равное небы­тию. Каждая вещь - результат соединения идеи (образца) с бесформенной материей. Чувственно воспринимаемые предметы – подобия идей. Идеи вечны, бесконечны, существуют вне физических пространства и времени. Вселенная идей есть иерархически упорядоченная система: сначала располагаются идеи пред­метов неживой природы, затем – растений и животных, да­лее – человека. На самой вершине находятся идеи красоты и блага. Упорядоченность бытия по-своему выражает Космос. Душа не возникает одновременно с телом, а существует вечно. Она состоит из трех частей: высшей – разум, сред­ней – воля и благородные желания, нижней – влечения и чувственность. Душа осуществляет познание. Так как душа вечна, то, познавая, она только «припоми­нает» образы, с которыми встречалась в идеальном мире. Искусство для Платона есть образ «неподлинного бы­тия», «подражание подражанию». Платон – создатель античной политической утопии. Его «Идеальное государство» представляет собой сообще­ство трех социальных групп и напоминает строение души. Правители – философы, стражи – воины, обеспечивающие безопасность, и производители – земледельцы и ремеслен­ники. Платон проповедовал уничтожение частной собствен­ности, общность жен и детей.

САД – философская школа Эпикура, основанная в 306 г. до н.э. в Афинах, названная по месту его расположения и ставшая главным центром материализма и атеизма античности. Учение Эпикура перешло в I в. до н.э. из Греции в Рим, и была продолжена Титом Лукрецием Каром. В Риме протекала ожесточённая борьба между школой Эпикура и стоицизмом – второй известной материалистической школой периода эллинизма.

СКЕПТИЦИЗМ – 1)философская концепция, сторонники которой либо сомневаются в возможности познания действительности, либо не сомневаются в этом, но останавливаются на отрицательном результате. 2) Одноиз направлений периода эллинизма, наиболее яркие представители которого –Пиррон (365-275 гг. до н.э.) и Секст Эмпирик (200-250 гг. н.э.), сосредоточили внимание на вопросе о познаниимира и фактически дали на него отрицательный ответ. Они последовательно обосновывали представление о том, что и органы чувств, и разум человека несовершенны, апотому не могут дать знания, соответствующие действительности, охватить величественную и непостижимую природу. Из этого следовало, что любая истина относительна и, значит, человекдолжен скептически, то есть с сомнением относиться к любому, и, прежде всего, философскому знанию, не отстаивать никаких мнений, претендующих на истинность. Скептическое отношение распространялось и на саму реальность – «если я чего-либо не знаю, то этого не существует». Поэтому жизненной задачей человека становилось достижение абсолютного спокойствия и безразличия («атараксии») в отношении всех событий, происходящих вокруг него. В эпоху Возрождения и в Новое время скептицизм сыграл некоторую положительную роль как антипод догматизма.

СОКРАТ (469-399 гг. до н.э.) – древнегреческий философ. Сын скульптора Софрониска и повитухи Финереты. Своим глав­ным призванием считал воспита­ние людей через систематические беседы. На рубеже V и IV вв до н.э., когда к власти в Афинах пришла демократическая партия, Сократ был обвинен в том, что не чтит традиционных богов, вводит новые божества и тем самым развращает юношество. Несмотря на возможность избежать суда и казни, Со­крат мужественно принял смертный приговор и выпил ча­шу с ядом цикуты, продемонстрировав ученикам, что исти­на сильнее страха смерти Письменных сочинений не оставил. Считал себя не мудрым, а лишь «любящим мудрость» (греч. фило + софия) Ему принадлежит известное изречение: «Я знаю, что ничего не знаю, но другие не знают даже этого». В центр своей философии Сократ поставил проблему человека. Познание природы - дело богов, человек же дол­жен познать самого себя. Философ призывал прислушивать­ся к «внутреннему голосу», который называл «даймонио ном» (демоном) «Даймонион» несет в себе высший смысл, благодаря ему боги сообщают человеку о его предназначении. Главное в беседах Сократа постижение сути добродетели. Основные добродетели: сдержанность (умение укро­щать страсти), мужество (способность преодолевать опас­ности) и справедливость (стремление соблюдать божественные и человеческие законы). Истинная нравственность, по Сократу – это знание подлинного блага. Инструмент достижения такого знания – сократический метод, который состоит из иронии (выясне­ние несостоятельности и непоследовательности во взглядах собеседника через умело подобранные вопросы) и «майевтики» («повивального искусства», помогающего родиться истине).

СОКРАТИКИ (сократические школы ) – философские школы, основанные учениками Сократа в начале IV в. до н.э. Каждая школа развивала отдельные стороны сократовского уче­ния, но одновременно обращались к идеям элеатов, софистов, к восточным учениям, что искажало целостное представление об учении Сократа. К сократическим относятся Киническая, Киренская, Мегарская и Элидо-эретрийская школы. Киническая школа – основана Антисфеном (самым ярким киником является Диоген Синопский). Название шко­лы связано со словом «пес», которым называли киников их со­временники. Как и Сократ, киники обращались к проблеме общих понятий, их роли в познании ив жизни челове­ка. Однако, в отличие от Сократа, киники пришли к выводу, что общее не существует ни в вещах, ни в человеческих поступках. Восприятию, учили они, доступны только отдельные вещи, тео­ретическое познание с помощью понятий невозможно (существуют отдельные реальные лошади, а слово «лошадь» – лишь общее имя). В центре внимания киников находятся этические вопросы. Счастье не может заключаться ни в наслаждении, ни в озабоченности государственными проблемами. Главное – личная добродетель, доблесть, которую можно пробудить, освободившись от условностей, пут общественного мнения. Идеал автаркии (автономности, самодостаточности). Сократ призывал к самостоятельности мысли, а киники – к самостоятельности поведения, к уникальности по­ступка (согласно преданию, Диоген даже умер по собственной воле в 90 лет, задержав дыхание). Представители Киренской школы (Аристипп, Антипатр, Гегесий) помимо сократовских идей испытали влияние софистов, а также восточной мудрости, что привело к появлению в их фило­софии элементов иррационализма. Подлинной реальностью об­ладают лишь единичные ощущения – единственный источник знания и счастья. Индивидуальные ощущения несравнимы друг с другом. Киренаики – сторонники эвдемонизма, учения, видящего смысл жизни в счастье, которое понимается ими как, мгновенное наслаждение. Поскольку невозможно достичь в этом мире всей полноты наслаждений, то лучше покончить счеты с жизнью (Гегесий). Вместе с тем киренаики провозглашали необходимость самообладания. Человек должен быть господином своего удовольствия, уметь управлять им; самообладание – необходимое условие счастья. Представители Мегарской школы (Евклид, Евбулид) счита­ют, что истинно существует только общее. Эта школа объедини­ла идеи Сократа с учением элеатов, придав ему этическую окра­ску. Диалектика как искусство разоблачения ложных идей методом «от противного» предохраняет человека от заблужде­ний и ведет его к счастью.

СТОИКИ – философская материалистическая школа, основанная приблизительно в 300 г. до н.э. Зеноном из Китона. Зенон собирал своих учеников в одном из портиков в Афинах, отчего и происходит название этой школы. Знаменитыми стоиками бы­ли Клеан, Хрисипп, Сенека, Эпиктет и император Марк Аврелий. Для стоиков, которые эклектически соеди­нили в своей философии самые различные учения, Бог и природа суть одно и то же, а человек – часть этой богоприроды. Все действительное и действующее телесно. Сила – есть сама тончайшая материя, управляющая миром, и есть бо­жество. Она пронизывает мир, как распро­страняющееся во все стороны дуновение (световой эфир), она – душа мира, его разум. Вся материя есть лишь модифика­ции, находящиеся в вечном изменении этой божественной силы и снова и снова растворяющиеся в ней. Все происходит со­гласно внутренней и абсолютной необходи­мости. Но су­ществует и свобода воли. Поэтому необходимо жить в согласии с природой, что значит – жить сообразно разуму. Все грехи и безнравственные поступки суть не что иное, как саморазрушение, утрата собст­венной человеческой природы, болезнь ду­ши. Правильные (сообразные с разумом и природой) желания и воздержания, по­ступки и дела – гарантия человеческого счастья. Но правильно желать и воздержи­ваться – значит всячески развивать свою личность в противовес всему внешнему, не быть покорным судьбе, не склоняться ни перед какой силой.

ЭЛЕЙСКАЯ ШКОЛА (ЭЛЕАТЫ) – философская школа в Древней Греции (конец VI – середина V в. до н.э.), представлен нам Парменидом и Зеноном из Элей, Мелиссом из Самоса. К не­посредственным предшественникам элеатов относится Ксенофан из Колофона. Логика развития элейской школы в целом вела от материализма к идеализму (учение Платона было основано на концепции Парменида). Самый яркий деятель элейской школы Парменид. Центральная категория его идеалистического учения – бытие. Бытие предстаёт у него в виде огромного сплошного шара, неподвижно покоящегося в центре мира. Он утверждал, что мысль – это всегда мысль о предмете, мысль – это всегда бытие. Никакого инобытия нет, существует только бытие. Познать такое бытие можно только при помощи интеллектуальной интуиции. Ученик и друг Парменида Зенон находит свои аргументы в защиту о неподвижном бытии, известные как апории Зенона. Третий представитель элейской школы – Мелисс выдвигает идею о бесконечности мира. Стремясь устранить из учения Парменида все непоследовательности, он пришёл к выводу, что если бытие едино, то оно должно быть бестелесным.

ЭЛЛИНИСТИЧЕСКИЙ ЭТАП АНТИЧНОЙ НАТУРФИЛОСОФИИ – развитие науки в Древней Греции периода упадка цивилизации, приблизительно с III в. до н.э. по IV в. н.э., когда возникают центры научной и духовной жизни. Этот период – время существования македонской державы, правители которой впервые начали финансировать науку. В Александрии, сооружённой по воле Александра Македонского, в III в. до н.э. перепатетик Деметрий Фалерский создал Мусейон (храм муз), соединивший в себе музей, научное и учебное заведение (здесь были ботанический сад, зоопарк, оборудование, необходимое для биологических, астрономических и медицинских исследований, а также библиотека из 700 тыс. книг). Учёным здесь платили пенсии. Музей стал прообразом будущих научных учреждений. Выдающимся учёным этого времени был Архимед (287-212 гг. до н.э.). Он определил число π (длина диаметра), длину окружности – 2πR, предложил вычисление площадей поверхностей и объёмов, ввёл понятие центров тяжести, предложил математическую формулу закона рычага (его выражение: «Дайте мне точку опоры, и я сдвину Землю), заложил основы гидростатики (позволявшие определять грузоподъёмность кораблей), оформил знаменитый закон Архимеда. Во время Пунической войны изобрёл метательное устройство. Во время взятия римлянами Сиракуз осенью 212 г. до н.э. Архимед погиб со словами: «Только не трогайте моих чертежей». Пифогориец Аристарх Самосский (310-230 гг. до н.э.) выдвинул гипотезу о вращении шарообразной Земли вокруг Солнца, которая осталась без внимания. Великий математик эллинизма Евклид (330-277) работал в Александрии. О жизни его известно мало, но известен его ответ властителю Александрии Птолемею. На его вопрос, нет ли дороги в математику попроще, Евклид ответил, что цар­ских путей в математику нет. Он автор «Начал геометрии», состоящих из 15 книг (до настоящего времени выдержал около 2000 изданий), где были приведены в систему математические достижения того времени. В ос­нову «Начал» положен аксиоматический метод, который был теоретическим фундаментом аристотелевской логика. Видным математиком был Аполлоний из Перги (III-II вв. до н.э.), внесший существенный вклад в аналитическую геометрию и предложивший новый метод оп­ределения сечения конуса, исправив и дополнив Евклида и Ар­химеда. Успехи географов и астрономов были связаны с успехами в математике. Походы Александра Македонского способствовали этому. На основе путевых записей историка Аристобула командующего флотом Неарха, описаны новые страны, с которыми греки познакомились тогда впервые. Андросфен оставил описание побережья Аравии, приле­гающего к Персидскому заливу. Пифейв своем сочинении «Об океане» рассказал о своем путешествии, когда он обогнул Британию, Шотландию, Исландию и совершил плавание по Балтийскому морю, при этом постоянно ведя астрономические и географические наблюдения и измерения. Основоположником физической и ма­тематической географии стал Эратосфен из Кирены, разносторонний эрудит, система­тизировавший географию того времени, возглавивший Александрийскую библиотеку. Он соста­вил подробное описание населенного мира, выделив две полови­ны – северную и южную, с помощью параллелей и меридианов поделил земную поверхность на ряд неровных четырехугольни­ков (длина меридиана, вычисленная Эратосфеном, та же, что приво­дится в современных учебниках). Развитие географических знаний было возможным благодаря успехам астрономии (в Александрийской обсерватории проводились наблюдения). Усовершенствовано деление дня и ночи на часы, минуты и секунды. С помощью тригонометрии Аристарх Самосский попытался определить расстояние от Земли до Луны и до Солнца и размеры светил. За 1800 лет до Коперника он выдвинул гипотезу о враще­нии Земли и других планет вокруг Солнца. Селевк из Селевки и, первыми дали объяснение морским при­ливам и отливам. Друзья Архимеда, астрономы Конон и Досифей , составили календарь на основе метеорологических наблюдений. Астроном Гиппарх из Никеи Вифинской составил каталог ста­ционарных звезд и определить продолжительность солнечного года. Многие ученые эллинистического периода были одно­временно выдающимися инженерами и конструкторами. Так, Диадет – военный инженер, построил осадную машину. В военных целях были созданы такие орудия, как катапуль­ты, метавшие оловянные ядра; петроболы, метавшие в осажден­ных камни и огромные балки под углом 45°. Конструктор Ксетибий построил «аэротонон» – ручной метательный снаряд пневматического действия, а также изобрел и скон­струировал и такие мирные предметы, как водяные часы, насо­сы разного типа, гидравлический орган, пожарную помпу. Герон Александрийский построил прототип паровой турбины, дальномеры, нивелиры, и дал пол­ное описание всех достижений античной механики (в том числе, описание сложных игрушек и хитроумных автоматов). Филология и историография как наука возникла в Александрии в III в. до н.э., что стало возможным бла­годаря огромной Александрийской библиотеке (Птолемеи – цари Александ­рии – щедро одаривали скупки рукописей). Для библиотеки требовались каталоги, библиографические описания, сопоставления различных списков, выявления наиболее авторитетной канонической редакции, установления имен авторов и времени написания, а также эстетическая оценка произведения. Из практических по­требностей библиотечного дела возникла филология: Зенодота Эфесского, Эратосфена, Ари­стофана, Аристарха Самофракийского, поэтов Каллимаха из Кирены и Визайнтийского Ликофрона, которые готовили издание текстов Гомера и других античных авторов. Поэт Каллимах составил обширный каталог (120 томов) греческих писа­телей и их произведений. Аристофан Византий­ский подготовил издания Гесиода, снабдив их коммен­тариями и написал две лексикографических работы – «Об атти­ческих словах» и «О лаконских глоссах». Первая грамматика греческого языка, написанная Диониси­ем Фракийским , подвела итоги развития греческой филологии. Самый выдающийся греческий историк этого времени Полибий (II в. до н.э.) утверждал, что дело историографа приносить практи­ческую пользу, учить понимать законы развития общества и предвидеть будущее. Он впервые сделал попытку написать целост­ную всемирную историю. Основной особенностью эллинистической науки стала спе­циализация. Каждая часть знания стремится обособиться в виде самостоятельной автономной науки со своими методами, зако­нами и логикой, но носила созерцательный характер, что проявлялось в от­рицательном отношении к технико-прикладной стороне науки. Александрия была научным центром, а не философским, как Афины, и это ослабило влияние философских идей на свобод­ный научный поиск.

ЭПИКУР (341-270 гг. до н.э.) – древнегреческий философ. В 306 г. до н.э. осно­вал афинскую философскую школу под названием «Сад Эпикура». Разделял свое уче­ние на три части: теория по­знания («каноника»), учение о природе («физика») и этика. Эпикур не придавал знанию самостоятельной ценности, а цель философии видел в достижении безмятежного состоя­ния духа, свободы от страха смерти и природных влечений. Основу знания, полагал Эпикур, составляют чувственные восприятия, заблуждения же есть результат ошибок чело­веческой мысли. Разделяя основные положения атомистического учения Демокрита, Эпикур ввел в атомистические представления идею о случайных отклонениях атомов от своей траектории. Эпикур считал, что душа тоже состоит из атомов, поэтому допущение о случайных отклонениях объясняло возможность свободного волевого действия. Душа, поскольку она, как и тело, атомарна, гибнет и разлагается вместе с ним, поэтому, полагал философ, нет смысла бояться смерти, ибо «смерть не имеет к нам никакого отношения: когда мы есть, то смер­ти еще нет, а когда смерть наступает, то нас уже нет». Богов, согласно Эпикуру, тоже не следует бояться и не следует ждать от них помощи, ибо боги предаются наслаж­дению, пребывая между множественными вселенскими мира­ми, и не вмешиваются ни в явления природы, ни в дела людей. Единственное благо для человека – наслаждение, которое Эпикур понимал как отсутствие страдания. Для обретения такого наслаждения следует устраниться от всех тревог, государственной деятельности и опасностей.

§3. Средневековая наука

АВГУСТИН АВРЕЛИЙ (БЛАЖЕННЫЙ) (354-430 гг.) – видный представитель периода патристики, который в своём труде «О граде божьем» разработал идею творения мира Богом по своей воле из ничего, рассматривая Бога как высшее благо, в котором содержатся вечные и неизменные идеи, сущности, обеспечивающие мировой порядок. Созданный Богом мир иерархично организован и представляет собой лестницу существ, восходящую к создателю мира. На вершине этой лестницы стоит человек, созданный Богом по своему образу и подобию. Живой мир отделен от человека непроходимой стеной (в нем нет души, он лишен права на гуманное отношение). Жизнь человека божественно предопределена. Человек – двойственное существо, в нем соединяются природное материальное тело и разумную душу. Душа человека бессмертна. Сущность духовной жизни – воля. Воля выше разума, высший акт воли – вера, поэтому вера выше разума (сначала человек должен уверовать в Бога, а потом познавать его). Имея душу, человек действует свободно, ибо обладает свободой воли, но все, что делает человек, делает через него Бог.

БЭКОН РОДЖЕР (1214-1292) – ученик Гроссетеста, францисканский монах. Получив образование в Оксфорде, он шесть лет провёл в Париже, но неудовлетворённый вернулся в Оксфорд, где занялся научной педагогической деятельностью. Его главный труд «Большое сочинение», где он утверждал: «истина – дочь времени, на её пути четыре препятствия – доверие сомнительному авторитету, привычка, вульгарные глупости и невежество; наука – дочь всего человечества. Каждое поколение исправляет ошибки предыдущего. Он разработал программу практического назначения знаний, которое улучшит человеку жизнь, выделяя два способа познания: а) при помощи аргументов и доказательств; б) из экспериментов и опыта (эти два способа должны сочетаться). Опыт бывает внешний и внутренний. Внешний опыт ведёт к природным истинам, а внутренний – к сверхприродным. Р. Бэкон ввёл в научный обиход термин «опытная наука» Его труд «Об опытной работе» поднимал вопросы эксперимента в физике и оптике. Бэкон считал скорость света конечной и высказал догадку о том, что свет не поток частиц, а представляет собой распространение движения, что близко по смыслу к волновой гипотезе. По его мнению, свет распространяется с чрезвычайно большой скоростью. Бэкон много внимания уделял изучению зрения, описал анатомическое строение глаза. На основе этих исследований ученый предугадал принцип телескопа и микроскопа. Он объяснил функции линз, усовершенствовал конструкцию очков. Он также угадал принцип магнетизма. Высказал интересные идеи по поводу аэроплана, взрывчатки, механической тяги паровозов. Р.Бэкон писал, что при помощи одного ума можно «сконструировать навигационные средства без гребцов так, что ог­ромные корабли поведет один рулевой со скоростью выше той, ко­торую могут развить сотни гребцов. Можно сконструировать кареты, которые помчатся без лошадей... машины, чтобы летать, небольшой по размерам инструмент, который будет поднимать бесконечные тяжести... устройство, при помощи которого можно перемещать ты­сячи людей... способ погружения на дно реки или моря, безопасный для жизни и тела».

ГРОССЕТЕСТ РОБЕРТ (1175-1253) – основатель средневекового натурализма, канцлер Оксфордского университета, заложивший основы опытного экспериментального естествознания и сформулировавший правила включения опытных данных в научное исследование: 1) изучение явлений начинается с опыта; 2) на основе анализа опытных данных формируется гипотеза; 3) из гипотезы выводятся дедуктивные следствия; 4) в заключении осуществляется опытная проверка следствий. Он перевёл «Этику» Аристотеля, написал комментарии к его «Физике» и «Аналитике». Гроссетест автор трудов «О свете или о начале форм», «О потенции или действии», «О единственной форме всех вещей». Он автор метафизики света, систематизатор эмпирических знаний о зеркалах и линзах, сформулировавший основания галилеевской физики.

ОККАМ УИЛЬЯМ (1300-1349) – представитель номинализма, проклятый церковью за идею разграничения власти церкви и государства, знания и веры, отрицавший значение богословия как особой области знания. Философская деятельность его была неразрывно связана с политической. Утверждал, что светская и духовная власть должны действовать раздельно. Материальная субстанция не имеет ни начала, ни конца, она вечна и не нуждается в идеальных формах. Будучи сенсуалистом, утверждал, что познание начинается с опыта. Вошёл в историю науки формулировкой так называемой «бритвы Оккама» – основной методологический принцип, основанный на требовании: сущности не следует умножать без необходимости, ибо каждый термин обозначает только один предмет. Номинализм Оккама основан на признании существовании только отдельных единичных вещей. Универсалии фиксируют только сходное в отдельных предметах. Учение Оккама называется «терминизм», поскольку объектом знания признаются не сами вещи, а их заместители – знаки вещей. Термин состоит из знака и слова, замещающего содержание понятия. Он различает первичные термины, относящиеся к самим вещам, и вторичные, которые представляют собой знак знака. На основании этого он делит науки на реальные и рациональные. Он различает два вида познания – интуитивное (опытное) и абстрактное. Познание объективного мира начинается с опыта через ощущения.

СПОР ОБ УНИВЕРСАЛИЯХ (от лат. – общий) – одна из основных проблем средневековой философии, связанная с существованием общих понятий, идей, которая состояла из двух вопросов: 1) что существует раньше – идея общего в предметах или сами предметы? 2) как существуют универсалии – в сознании человека или вне сознания? В зависимости от ответа сложились три направления: 1) реализм – универсалии существуют реально вне сознания, как самостоятельные сущности а общее – это идея, которая существует до единичных вещей (Иоанн Скотт Эриугена, Ансельм Кентерберийский); 2) номинализм (лат. номина – имя) – реально существуют только вещи, а общее, универсалии находятся в человеческом сознании как имена вещей. Общее существует после вещей (Росцелин, У. Оккам); 3) концептуализм (Фома Аквинский, Пьер Абеляр) – сформировал учение о трояком существовании универсалий: а) они существуют до единичных вещей – в Боге как сущности вещей; б) они существуют в вещах – как общее, присущее всем вещам; в) они существуют после вещей – в сознании человека как имя, название вещи.

СРЕДНЕВЕКОВАЯ АРАБСКАЯ НАУКА – наука стран арабского Востока (VII по XIII вв.), воспринявшая достижения античного мира, которая формируется в период правления Мухаммеда, объединившего территории Аравийского полуострова, Ирана, Ирака, Египта, Сирии, части Закавказья, Средней Азии, Северной Африки, Пиринеев, и создавшего первое мусульманское теократическое государство. Багдадские халифы покровительствовали наукам. На арабский язык были переведены сочинения Аристотеля, Птолемея, Архимеда. Активно развивались земледелие и торговля, геодезия и географии, математика и военное дело астрономия и философия. Известным арабским астрономом и математиком был Ал-Батани (около 850-929 гг.), который в своей «Книге по астрономии» (910 г.) развивает учение Птолемея и вводит понятие «синус». Другой астрономом Улугбек (1394 - 1449) составил «Новые астрономические таблицы», где заложил теоретические основы астрономии (указал положение 1018 звезд, привел таблицы движения планет, отличающиеся большой точностью) и построил в 1429 г. астрономическую обсерваторию, которую оборудовал уникальными приборами. В XII веке арабы создали особую цифровую систему (отсюда «цифра» по-арабски означало «нуль»). Видным математиком был Ал-Хорезми (787 - 850), который создал трактат «Краткая книга об исчислении ал-джебры и ал-мукабалы» (от термина «ал-джебр» возникло название «алгебры», а от имени Ал-Хорезми «algorithmus» появился термин «алгоритм»). Крупным математиком, известным поэтом был Омар Хайям (1040-1123)., который в своих математических сочинениях изложил решения алгебраических уравнений до 3-й степени включительно, расширил понятие числа и на положительные иррациональные числа. Хайям возглавлял астрономическую обсерваторию, разработал проект весьма точного календаря, отличающегося от григорианского. Крупнейшим естествоиспытателем был ученый-энциклопедист Ал-Бируни (973 - ок. 1050), написавший около 150 трудов по истории, геодезии, лингвистике, математике, утверждал возможность движения планет вокруг Солнца, указывал на причину лунных фаз и сконструировал множество экспериментальных приборов, призывая прибегать к опыту и проверять результаты исследований опытным путем. Его ученик – Абу Али Ибн Сина (латинизированное имя v Авиценна) (ок.980 - 1037) – ученый, поэт, философ, врач создал энциклопедию теоретической и клинической медицины «Канон врачебной науки» (в 5 частях), где был систематизирован опыт греческих, римских, индийских и среднеазиатских врачей. Труды арабских алхимиков, которые пытались отыскать способ изготовления золота и эликсир жизни и молодости, описывали свойства ряда химических соединений, необходимых для медицины (производили спирт как антисептик). Наибольшую известность получили алхимики Джабир Ибн-Хаян (ок.721-ок.815) (латинизированное имя Гебер) и Ар-Рази (865-925), которыми изобретены и описаны важнейшие для проведения химических экспериментов приспособления и оборудование: мензурки, колбы, тигли, горелки, шпатели и многое другое. Арабами разработаны географические представления об Азии и Северной Африке, которые обобщены в многотомном «Словаре стран», (1224 г.).

СРЕДНЕВЕКОВАЯ ЕВРОПЕЙСКАЯ НАУКА – наука периода от заката античной культуры (V в.) до эпохи Возрождения включительно (XV в.), который называют «темным», «мрачным», имея в виду общий упадок цивилизации, крушение Западной Римской империи под нашествием варваров в 476 г. и проникновение религии во все сферы духовной культуры, что значительно замедлило развитие Западной Европы. С утверждением христианства радикально изменилась система ценностей. Сформировалась новая картина, новое мировоззрение и новый строй мышления. Менталитет средневекового человека символичен, а символизм начинался на уровне слов. Язык стал инструментом ума, что объясняет средневековые диспуты. Средневековая наука была институционизирована в школах, а в дальнейшем – в университетах. Её идеология была христианство, а доктриной – схоластика (от греч. Школа). В VI в. император Юстиниан закрывает последние языческие школы, но одновременно открываются школы следующих типов: монастырские (при аббатствах), епископальные (при кафедральных соборах и придворные (при дворцах). Монастырские школы становились хранилищами памятников классической культуры, епископальные – школы начального образования – содержательными по программам обучения и приобщения к культуре. Церкви и монастыри обеспечивали необходимый уровень грамотности и образования (библиотеки, комментирование текстов древних рукописей, обобщение знаний ученых различных научных школ и направлений). Директором одной из школ был советник короля Карла Великого по вопросам культуры и образования Алкуин Йорский (730-804 гг.). В школе было трёхступенчатое обучение: чтение, письмо, простонародная латынь, общие сведения о библии; изучение семи свободных искусств; углублённое обучение священному писанию (по каждому предмету руководитель школы пишет учебник). Приемником античности стала Византия (столица – Константинополь), просуществовавшая около 1000 лет, о научных и технических достижениях которой известно немного, что объясняется нашествием крестоносцев, арабов, турков-османов. К научным достижениям Византии относятся труды по математике и механике епископа Льва, прозванного Математиком (начало IX в. – 869 г.). Здесь впервые были использованы буквы как математические символы (зарождение алгебры). Математические знания использовались византийцами на практике (храм Св. Софии в Константинополе). Химические познания использовались в фармакологии, косметологии и ремесленном производстве. В Западной Европе трудились алхимики, которые искали «философский камень», способного превращать неблагородные металлы в золото, а также «эликсира молодости» (от арабского – «ал-иксир» – сухое вещество, превращающее металлы в золото). В XII веке европейские алхимики получили путем перегонки винный спирт, используемый ими как химический реактив, горючее вещество, растворитель. Среди немногочисленных учёных раннего средневековья известны: Боэций (480-524) – последний римлянин, передавший знания аристотелевской философии; Кассиодор (490-593) – латинский риторик и переписчик древних текстов; Исидор Севильский (560-636) – основатель первой средневековой энциклопедии; Беда Достопочтенный (673-735) – основатель христианской экзегетики (автор четырёх смыслов Священного Писания). Учитель Фомы Аквинского по теологическому факультету в Париже был Альберт Великий (1206-1280) – автор книг «О растениях», «О минералах», «О животных» и др., где под влиянием Аристотеля отстаивается идея открытия природных причин естественному порядку вещей. Он утверждал н

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Античная наука

Что такое античная наука? Что такое наука вообще? Каковы основные признаки науки, отличающие ее от других видов материальной и духовной деятельности человека - ремесел, искусства, религии? Удовлетворяет ли этим признакам тот культурно-исторический феномен, который мы называем античной наукой? Если да, то была ли античная, в частности ранняя греческая наука, исторически первой формой науки или у нее были предшественники в странах с более древними культурными традициями - таких, как Египет, Месопотамия и т. д.? Если верно первое предположение, то каковы были пред научные истоки греческой науки? Если же верно второе, то в каких отношениях находилась греческая наука с наукой своих старших восточных соседей? Имеется ли, наконец, принципиальное различие между античной наукой и наукой Нового времени?

В какой-то мере мы попытаемся ответить на перечисленные вопросы уже во введении, частично же ответы выявятся в ходе дальнейшего изложения.

По поводу самого понятия пауки среди ученых-науковедов наблюдаются весьма большие расхождения. Мы укажем на две крайние точки зрения, находящиеся в радикальном противоречии друг с другом.

Согласно одной из них, наука в собственном смысле слова родилась в Европе лишь в XVI--XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук -- процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу. Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания).

Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков.

Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы пред вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.

Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания -- моделирование механизма природных явлений.

Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.

Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления.

И вот, обратившись к античной науке в период ее наивысших достижений, можем ли мы найти в ней черту, принципиально отличающую ее от науки Нового времени? Да, можем. Несмотря на блестящие успехи античной науки эпохи Евклида и Архимеда, в ней отсутствовал важнейший ингредиент, без которого мы теперь не можем представить себе таких наук, как физика, химия, отчасти биология. Этот ингредиент -- экспериментальный метод в том его виде, в каком он был создан творцами науки Нового времени -- Галилеем, Бойлем, Ньютоном, Гюйгенсом. Античная наука понимала значение опытного познания, о чем свидетельствует Аристотель, а до него еще Демокрит. Античные ученые умели хорошо наблюдать окружающую природу. Они достигли высокого уровня в технике измерений длин и углов, о чем мы можем судить на основании процедур, разрабатывавшихся ими, например, для выяснения размеров земного шара (Эратосфен), для измерения видимого диска Солнца (Архимед) или для определения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей). Но эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и которое имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение,-- такого эксперимента античность еще не знала. Между тем именно такой эксперимент лежит в основе физики и химии -- наук, приобретших ведущую роль в естествознании Нового времени. Этим объясняется, почему широкая область физико-химических явлений осталась в античности во власти чисто качественных спекуляций, так и не дождавшись появления адекватного научного метода.

Но почему так случилось? Почему античная наука на дошла до открытия экспериментального метода в указанном выше смысле? Ответить на эти вопросы мы не сможем, не выйдя за пределы науки как таковой и не рассматривая тех социальных условий, в которых античная наука возникла и развивалась.

Одним из признаков настоящей науки является ее самоценность, стремление к знанию ради самого знания. Этот признак, однако, отнюдь не исключает возможности практического использования научных открытий. Великая научная революция XVI--XVII вв. заложила теоретические основы для последующего развития промышленного производства, направления нового на использование сил природы в интересах человека. С другой стороны, потребности техники явились в Новое время мощным стимулом научного прогресса. Подобное взаимодействие науки и практики становится с течением времени все более тесным и эффективным. В наше время наука превратилась в важнейшую производительную силу общества.

В античную эпоху подобного взаимодействия науки практики не было. Античная экономика, основанная на использовании ручного труда рабов, не нуждалась в развитии техники. По этой причине греко-римская наука, за немногими исключениями (к которым относится, в частности, инженерная деятельность Архимеда), не имела выходов в практику. С другой стороны, технические достижения античного мира -- в области архитектуры, судостроения, военной техники -- не находились ни в какой! связи с развитием науки. Отсутствие такого взаимодействия оказалось в конечном счете пагубным для античной науки.

Истоки ранней греческой науки

Основной проблемой ранней греческой науки о природе была проблема происхождения и устройства мира, рассматриваемого как единое целое. Различные решения этой проблемы, предлагавшиеся ранними греческими мыслителями, имели чисто спекулятивный характер и иными в то время быть не могли. Первичным источником этих спекуляций была мифология -- в первую очередь космогонические мифы, создававшиеся на определенной стадии культурного развития всеми народами мира, в том числе и греками. Разумеется, в своих умозрительных построениях первые греческие ученые учитывали как данные непосредственных наблюдений, так и опыт многовековой человеческой практики. Для обработки всей этой информации они пользовались методами, которые с нашей теперешней точки зрения еще не могут быть названы научными. С одной стороны, это было упорядочение традиционного и эмпирического материала с помощью набора оппозиций -- таких, как верх -- низ, левое -- правое, теплое -- холодное и многих других, укоренившихся в человеческом мышлении с незапамятных, первобытных времен. С другой же стороны, это был метод аналогий, который на ранней стадии развития науки служил важнейшим средством для образования умозаключений.

Не только литературные памятники древних народов, но и данные современной этнографии содержат необычайно богатый материал, относящийся к миротворческой деятельности многих народов мира. При этом оказывается, что космогонические мифы могут быть разбиты на несколько групп, соответствующих различным этапам развития человеческого общества. У самых отсталых народностей (например, у австралийских аборигенов) мы находим лишь зачатки космогонического мышления, выражающиеся в мифических образах так называемых культурных героев вселенной. Такой демиург мыслится примитивным сознанием в форме какого-то совершенно конкретного существа. В одних случаях это просто живший когда то большой и сильный человек, в других -- легендарные братья-близнецы. Весьма часто творцом мира оказывается то или иное животное: подобные зооморфные мифы очень распространены у индейцев Северной Америки. Создание мира осуществлялось демиургом, как правило, в результате единого творческого ста, подобного изготовлению орудия или строительству хижины. В научной литературе подобные мифы получили наименование креативных.

В греческой мифологии черты архаичного «культурного героя» сохранились в образе Прометея, осложнении, правда, мотивом богоборчества.

Разложение первобытного родового строя и возникновение классов и классовых общественных отношений сопровождалось переходом от примитивных религиозных образований к развитым формам политеизма. При изучении их форм мы уже можем обратиться к письменным источникам народов Древнего Востока и античного мира, держащим классические примеры нового этапа развития миротворческого сознания. Боги, которым поклонялись египтяне, вавилоняне, греки, первоначально были не связанными между собой племенными богами, но объединение локальных культов приводило в каждом случае к образованию пантеона, в котором наряду с верховным божеством (Амон-Ра, Мардук, Зевс) фигурировало много таких богов, между которыми устанавливались генеало-теские отношения. В мифах, повествующих о происхождении богов, об их борьбе между собой, о чередовании различных поколений богов, отражались в представлениях людей о возникновении и эволюции мира. В эпоху развития политеистических религий космогония, как правило, выступает в форме теогонии. Именно такого да Критского, Акусилая. наряду с традиционными образами греческой мифологии авторы этих теогонии много материала заимствовали из религиозно-мифологических представлений народов Ближнего Востока. Аристотель называет их «теологами», противопоставляя их «физикам» -- творцам ранней греческой науки «о природе». Вклад «теологов» в развитие науки был минимальным, поэтому в дальнейшем мы о них больше говорить не будем.

Физики также испытали большое влияние как греческих, так и восточных мифов о происхождении мира, но в отличие от «теологов» для них был характерен решительный отказ от мифологических образов и переход к чисто рациональным мотивировкам. Однако, преодолев внешний антропоморфизм и зооморфизм космогонических мифов, первые греческие ученые использовали ряд мотивов, встречавшихся в этих мифах. Эти мотивы то здесь, то там проявляются в космогонических (и космологических) концепциях мыслителей-досократиков от Фа-неса до Демокрита.

Коротко перечислим эти мотивы, ибо без их учета невозможно понять происхождение ряда идей, характерных для ранней греческой науки.

1. Почти во всех космогонических мифах наличествует представление о первичном, бесформенном состоянии вселенной, чаще всего (но не всегда) мыслившемся в форме беспредельной водной бездны. Идею водной бездны мы находим в шумеро-вавилонских, египетских и индийских космогонических мифах, а также в библейской космогонии. Для греческой мифологии эта идея была не столь типичной (у Гесиода первичное состояние мира олицетворяется в образе Хаоса), хотя явный намек на нее мы обнаруживаем в одном месте «Илиады». Влияние восточных «водных» космогонии сказалось на учении Фалеса.

2. Важнейшим моментом мирообразования в ряде космогонических мифов является отделение (как правило -~ насильственное) Неба от Земли, которые олицетворяют мужское и женское начала мироздания. Этот мотив представлен в полинезийском мифе о Рангу и Папа, в дуализме двух начал -- Инь и Ян -- у китайцев, в египетском мифе о Шу и Тефнут, у греков же в мифе о Гее и Уране. В трансформированном и рационализированном виде мотив отделения Неба от Земли появляется в учениях Анаксимандра, Анаксагора, Эмпедокла и атомистов.

3. Почти для всех космогонических мифов характерна идея эволюции в сторону большей упорядоченности и лучшего устроения мира. Как правило, эта идея реализуется в форме борьбы последовательно сменяющих друг друга поколений богов, завершающейся воцарением светлого бога, разумного и справедливого; в индоевропейской мифологии это обычно бог ветра, бури и грозы -- Инд-ра, Перун, Вотан, Зевс. Этот мотив, тесно связанный с предыдущим, наличествует во всех космогонических учениях досократиков, где представлена идея начального, неупорядоченного состояния мира.

4. В мифологических представлениях некоторых народов предыдущий мотив дополняется мотивом периодической гибели и нового рождения вселенной (миф о «гибели богов» в германо-скандинавских легендах, идея «большого года», встречающаяся в древнеиранских религиозных текстах). В греческой мифологии этот мотив в явном виде не фигурирует, но подспудно ощущается в намеках на непрочность царства Зевса и на возможность его низвержения новым властелином мира. У досократиков этот мотив был использован Анаксимандром и, возможно, Анаксименом, далее Гераклитом и -- в особенно отчетливой форме -- Эмпедоклом.

Из сказанного вытекает, что космогонические концепции досократиков чрезвычайно многим обязаны космогоническим мифам предшествующей эпохи -- как греческим, так и восточным. Греческим источником, откуда ранние мыслители черпали свои космогонические мотивы, была прежде всего «Теогония» Гесиода, что же касается восточных заимствований, то они иногда могли быть прямыми и непосредственными (как это, по-видимому, имело место у Фалеса), иногда же носили опосредованный характер, поскольку в самой греческой мифологии существовали сюжеты, имевшие восточное происхождение. Это относится, в частности, к мифу о титане Кро-носе оскопившем своего отца Урана. Сравнительно не-павн"о в числе прочих археологических находок была обнаружена клинописная запись значительно более древней хетто-хурритской версии этого мифа, в которой в качестве точного аналога Кроноса выступает бог Кумарби. Перенесение этого сказания на греческую почву произошло, по-видимому, задолго до Гесиода -- может быть, еще в крито-микенскую эпоху.

Теогония была произведением эпической поэзии. Но если не ограничиваться космогонической проблематикой, а посмотреть на значение этой поэзии в более широком плане, то надо признать, что не только Теогония, но греческий эпос в целом сыграл огромную роль в становлении рационального, а следовательно, и научного мышления древних греков. Дело не только в том, что эпическая поэзия -- нам она известна лишь по произведениям, дошедшим до нас под именами Гомера и Гесиода,-- снабжала греческую науку теми или иными мотивами или сведениями, а прежде всего в том, что она способствовала разрушению религиозно-мифологического мировосприятия, с одной стороны, подвергая традиционные мифы рационалистической обработке, а с другой -- эстетизируя их. И в том и в другом случае исчезало непосредственное отношение к мифу, как к живой реальности.

Момент рационализации особенно отчетливо ощущается у Гесиода. Уже в образе Хаоса (который, по-видимому, не принадлежал к числу фигур традиционной мифологии, а был созданием творческой фантазии самого Гесиода) религиозно-мифологический элемент оказывается доведенным до минимума. Хаос -- зияющая бездна, примитивный прообраз будущей идеи пространства -- фактически лишен следов какой-либо персонификации. После Хаоса, но не из него, возникают три божества, вернее -- три космических сущности. Во-первых, «широкогрудая Гея», Земля, вечно незыблемое основание всего сущего. Во-вторых, Эрос, Любовь, сладостная причина всех зачатий и рождений. В-третьих, мрачный Тартар, в общей структуре мироздания представляющий собой естественную антитезу звездному Небу (Урану), порождаемому -землей (Геей) без участия какого-либо мужского партнера. Подобным же бесполым способом Земля порождает горы и пустынное, шумящее волнами море -- Понт. Естественный процесс космообразования завуалирован лишь очень слабой персонификацией космических понятий. В этой части поэмы нет пересказа традиционных мифов, здесь работает собственная мысль Гесиода, в силу чего он оказывается прямым предшественником ранних греческих физиков.

В другой поэме Гесиода, в «Трудах и днях», рационализация мифологического материала выражается в сведении его до уровня притчи, имеющей морально-дидактическую окраску. В греческой мифологии известен образ Эриды -- богини раздора (напомним читателю, что Эрида, которая не была приглашена на пир богов, явилась туда сама и бросила яблоко, послужившее причиной спора между тремя богинями, приведшего в конечном счете к Троянской войне). Гесиод в целях морального наставления говорит о двух Эридах -- хорошей и дурной. Затем излагаются два мифа, имеющие явно нравоучительную окраску: миф о Прометее, Эпиметее и Пандоре и миф о пяти поколениях, известный не только в Греции, но и на Востоке. А затем следует уже не миф, а типичная басня о ястребе и соловье. Процесс эволюции от мифа к нравоучительной басне представлен в этой поэме Гесиода очень отчетливо.

Иную картину мы находим у Гомера. Будучи в отличие от Гесиода прежде всего великим художником, Гомер эстетизирует мифологические сюжеты, подвергая их безупречной художественной обработке, в силу которой его поэмы сохранили до нашего времени значение «недосягаемых образцов». Боги у Гомера обрисованы так же ярко и индивидуально, как и смертные герои. Они, правда, могучи, прекрасны и бессмертны, могут становиться невидимыми или принимать по своему желанию любой облик, но в остальном обнаруживают чисто человеческие качества. Как и людям, им присущи чувства радости, злобы, зависти, плотского вожделения, они способны буйно веселиться и испытывать физические страдания. Сам поэт относится к описываемым им богам с явной иронией. Нет ничего удивительного, что позднейшие критики Гомера -- от Ксенофана до Платона -- ставили ему в вину профанацию божественных сюжетов и подрыв религиозных чувств. Если в «Трудах и днях» Гесиода миф становится нравоучительной притчей, то в поэмах Гомера он превращается в занимательный литературный сюжет.

Наряду со всем этим греческий эпос содержал и позитивную картину мира, которую можно рассматривать прообраз последующих моделей космоса. В схематичном изложении эта картина сводится к следующему.

Поверхность Земли подобна плоскому диску, омываемому водами громадной, кругообразной реки -- Океана. Сверху мир ограничен твердой небесной полусферой, пространство под которой делится на две области: верхняя -- местопребывание богов -- заполнена светлым, сияющим эфиром, в нижней возникают облака, ветры и другие атмосферные явления. Воздуха в позднейшем понимании греческий эпос еще не знал: словом аёг в то время обозначался не атмосферный воздух, но туман, мгла, дымка. Подземный мир также делился на два этажа: верхний -- Аид, царство мертвых -- находится недалеко под поверхностью Земли; нижний -- Тартар -- отстоит от этой поверхности на таком же расстоянии, на какое -- в другую сторону -- от нее удалено небо. В «Теогонии» Гесиода содержится подробное описание Тартара: это пустая, темная бездна, в которой носятся вихри; вход в него подобен узкому горлышку («шее»), над которым расходятся «корни» или «истоки» земли, неба и моря.

Подобная «вертикальная» структура вселенной характерна для мифологических представлений практически всех народов мира и самым непосредственным образом связана с универсальной мифологемой «мирового дерева».

Грек эпохи Гомера и Гесиода (эта эпоха соответствовала, грубо говоря, IX--VII вв. до н. э.) обладал некоторым запасом сведений астрономического и метеорологического характера. Эти сведения не были результатом специальных научных изысканий, а входили в сокровищницу многовекового народного опыта.

Так, можно предполагать, что уже тогда существовали наименования для целого ряда созвездий и наиболее ярких звезд; из них в поэмах Гомера и Гесиода упоминаются Медведица, Орион, Волопас, Сириус и некоторые Другие. По времени восхода и захода Плеяд греки (как, впрочем, и другие народы мира) определяли сроки проведения сельскохозяйственных работ. Из планет различались только Утренняя звезда (Эосфор, т. е. «несущая зарю») и Вечерняя звезда (Геспер), причем тогда еще не было известно, что они являются различными положениями одной и той же планеты (Венеры). Согласно Гомеру, все небесные светила, за исключением Медведицы, «купаются» в Океане, т. е. заходят за горизонт; речь идет, очевидно, лишь о светилах, имеющих наименования. Каким образом при восходе они оказываются с другой стороны земного диска, остается неясным, О том, что они проходят под Землей, тогда еще не было и речи: ведь в подземном мире царит вечный мрак и никакие светила там оказаться не могут.

Восточное и западное направления определяются в «Одиссее» по восходу и заходу Солнца; нет никаких указаний на то, каким образом определялись (и определялись ли вообще) север и юг. Впрочем, в той же поэме упоминаются четыре ветра -- Эвр, Нот, Зефир и Борей, которые, очевидно, соответствовали четырем сторонам света.

Географические сведения, сообщаемые в «Илиаде», ограничиваются Балканским полуостровом, Эгейским морем (включая малоазийское побережье) и островом Крит. В «Одиссее» упоминается Египет, который в нескольких местах * поэмы отождествляется с Нилом. Что касается большинства мест, где побывал Одиссей во время своих странствий, то их идентификация с реальными географическими объектами представляет большие трудности. Географические познания Гесиода были, очевидно, более обширными: так, он знает огнедышащую гору Этну, которая у Гомера нигде не упоминается, а его список рек содержит названия ни разу не встречающиеся в поэмах Гомера (Эридан, Фасис).

Таким был мир в представлении рядового грека преднаучной эпохи. Возможно, впрочем, что отдельные категории лиц (моряки, торговцы) имели более богатые и точные сведения о тогдашнем Средиземноморье, однако никаких письменных памятников, в которых эти сведения были бы зафиксированы, мы не имеем.

Сложным и дискуссионным вопросом является вопрос о восточных влияниях на раннюю греческую науку в целом (а не только на космогонические идеи философов-досократиков). Первые робкие шаги этой науки относятся, как мы знаем, лишь к VI в. до н. э. Представляется удивительным, если бы эти шаги были сделаны вполне самостоятельно, без каких-либо заимствований у египтян, вавилонян, персов и других народов, населявших Малую Азию и восточное Средиземноморье. Именно в это время, в VII--VI вв. до н. э., торговые отношения между многими греческими городами и странами Ближнего Востока становятся особенно оживленными. На сирийском и египетском побережье основываются греческие поселения, промежуточными звеньями, связывавшими Спеческий мир с древними восточными цивилизациями. В Малой Азии роль таких промежуточных звеньев играли расположенные там негреческие государства -- Лидия, Киликия, Фригия и другие, возникшие на развалинах древнего хеттского царства. Многие молодые греки отправлялись служить в индийских, персидских и даже вавилонских войсках: в то время это не считалось чем-то зазорным или антипатриотичным. Все эти контакты не могли не привести к заимствованию греками каких-то элементов культуры тех стран, в которых им довелось находиться. Весь вопрос заключается в характере и масштабах такого рода заимствований.

Прежде всего это были общекультурные заимствования, не имевшие прямого отношения к научной деятельности, но тем не менее оказавшие косвенное влияние на развитие греческой науки. Так, например, громадное значение для судеб греческой культуры в целом имело алфавитное письмо, впервые появившееся в Сирии и в несколько видоизмененном виде заимствованное греками, по-видимому, у финикийцев. Это заимствование следует отнести примерно к X--IX вв. до н. э., поскольку наиболее ранние археологические находки, содержащие греческие надписи, датируются началом VIII в. до н. э. От хеттов или других, граничивших с хеттами, малоазийских народов греки научились изготовлению железа, упоминаемого уже в «Илиаде» Гомера. Первоначально железо считалось редким и дорогим металлом, но постепенно оно вошло в быт и из него стали изготавливать не только оружие, но также орудия ремесленного производства -- такие, как ножницы, пилы, клещи, молотки.

В Египте греки могли воспринять некоторые достижения египетской математики, имевшей, как указывалось выше, чисто прикладной характер. Сюда принадлежат: простейшие геометрические соотношения, приближенное определение площадей, объемов, расстояний до удаленных предметов, методы счета, включая операции с простейшими Дробями. Следует отметить, что все связанное с искусством счета у греков именовалось «логистикой»: это была своеобразная разновидность ремесла, считавшаяся Делом купцов, сборщиков налогов, менял и т. д. и не имевшая прямой связи с теоретической математикой, которая стала развиваться самостоятельно и независимо от практических потребностей. О методах греческой логисту, ки у нас фактически нет никакой информации, посколы;) мы не располагаем текстами, подобными текстам египетских папирусов или клинописных табличек, где излагаются соответствующие приемы. Представляется, однако, весьма вероятным, что источником греческой логистищ были египетские методы счета, с которыми греки были несомненно хороню знакомы.

Для греков классической эпохи был характерен большой пиетет по отношению к египетской культуре. Греческие авторы имели обыкновение подчеркивать многовековую мудрость египетских жрецов, по сравнению с которой научные достижения греков казались незрелым! попытками новичков (соответствующие высказывания можно найти, например, в диалогах Платона). На самом деле, как мы можем теперь судить, никакой особой «мудростью», во всяком случае в сфере научных познаний, египетские жрецы не обладали; не исключено, что слухи о наличии у них скрытой от непосвященных, эзотерической, науки распространялись ими самими. Не имея возможности из-за языкового барьера и трудностей овладения иероглифической письменностью убедиться в истинности или ложности этих слухов, греки охотно им верили, причем эта вера продолжала жить на протяжении многих последующих веков. Так, например, историк I в. до н. э. Диодор утверждал, что как древнейшие поэты и законодатели -- Орфей, Мусей, Гомер, Ликург, Солон, так и ученые -- Платон, Пифагор, Евдокс, Демокрит, Энопид Хиосский -- бывали в Египте и беседовали с жрецами. Именно от египтян эти люди заимствовали учения, государственные установления и искусства, которые были затем перенесены ими в Грецию; это относится, в частности, к геометрии, к пифагорейским учениям о числах и о переселении душ, к астрономическим познаниям Демокрита, к законодательным проектам Платона и т. д. Подобные утверждения следует причислить к области исторических легенд, имеющих лишь малое отношение к действительности.

Переходим к греко-вавилонским связям. Как раз у вавилонян греческие ученые могли научиться многому, чего они совсем не знали. Наиболее тесные контакты греков с вавилонянами относятся к периоду так называемого «нововавилонского царства», существовавшего в течение семидесяти с лишним лет -- в промежутке между падением, сирийского владычества (612 г. до н. э.) и завоеванием Вавилона персидским царем Дарием (538 г. до н. э.). Это была как раз эпоха зарождения греческой науки. Под началом вавилонских царей в то время сражалось немало греков, среди которых был, например, брат знаменитого поэта Алкея; одновременно между городами малоазийскои Ионии и Вавилоном шла оживленная торговля. Характерно однако, что высшие достижения вавилонян в области алгебры и наблюдательной астрономии оставались грекам неизвестными вплоть до эпохи эллинизма, начало которой датируется походами Александра Македонского. Видимо, те греки, которые в VII--VI вв. до н. э. торговали с вавилонянами или были у них на службе, не имели контактов с вавилонскими математиками и астрологами, располагавшими соответствующей информацией. Зато многие конкретные вещи, имевшие практическое значение, могли быть и действительно были взяты греками у вавилонян. В их числе Геродот называет два типа солнечных часов -- гномон и полос -- а также деление дня на 12 часов. Последнее было, очевидно, связано с числом зодиакальных созвездий, имена которых также пришли из Вавилона и стали известны в Греции в середине VI в. до н. э.

Исторически первые географические карты были обнаружены также у вавилонян; позднее подобные карты начали составлять греческие ученые.

Третьей великой державой, с которой греки в рассматриваемую нами эпоху находились в непосредственном контакте, была Персия. В отличие от вавилонских «халдеев» иранские «маги» в меньшей степени интересовались математикой и астрономией; во всяком случае мы не знаем о наличии у них каких-либо достижений в этой области. Зато у них существовала интереснейшая религиозно-философская традиция, древнейшим памятником которой являются гимны Авесты -- священной книги древних иранцев. В результате реформистско-проповеднической Деятельности Зороастра (Заратуштры) иранская религия (маздаизм) была очищена от архаических элементов, приняв необычный для того времени отвлеченный и возвышенный характер. Верховным божеством в ней был бог Добра и света Ахурамазда (Ормазд), которому противостоял дух зла Анхра-Майнью (Ариман); борьба доброго и злого начал составляла, по мнению маздаистов, сущность мирового процесса. Отсутствие в этой религии явного антропоморфизма и зооморфизма резко контрастировало с религиозными представлениями большинства других народов того времени и не могло не привлечь к себе внимания греков. Вот что по этому поводу пишет, например, Геродот:

«Что до обычаев персов, то я могу сообщить о них вот что. Воздвигать статуи, храмы и алтари [богам] у персов не принято. Тех же, кто это делает, они считают глупцами, потому, мне думается, что вовсе не считают богов человекоподобными существами, как это делают эллины. Так, Зевсу они приносят жертвы на вершинах гор и весь небесный свод называют Зевсом. Совершают они жертвоприношения также Солнцу, Луне, Земле, воде и ветрам».

По своему обыкновению, Геродот называет Ахурамаз-ду греческим именем. Интересно то, что в этом противопоставлении персидских верований греческим он явно симпатизирует первым. Антропоморфизм традиционной греческой религии перестал удовлетворять мыслящих греков того времени. Еще задолго до Геродота многие элементы иранских религиозных (и космологических) представлений были восприняты в Греции орфиками, Фереки-дом Сиросским и такими мыслителями VI в. до н. э., как Анаксимандр, Гераклит и, может быть, Ксенофан.

Все перечисленные выше идеи и заимствования оказали влияние на формирование ранней греческой науки. Читателя может удивить их разнородность: действительно, что общего между древними космогоническими мифами и такими вещами, как солнечные часы или измерение площадей? Между тем дело обстояло именно так: синкретизму этой ранней науки соответствовало разнообразие входивших в ее состав элементов.

В заключение нам надо остановиться еще на одном факторе, оказавшем если не прямое, то огромное косвенное воздействие на становление греческого научного мышления.

Мы указали, что между сферой материального производства и достижениями античной науки не существовало того взаимодействия, которое мы наблюдаем в наши дни и которое стало характерной особенностью научно-технического прогресса последних столетий. Это безусловно справедливо. Тем не менее греческая наука вряд ли могла бы стать наукой, если бы ремесленное производство и инженерная деятельность греков не достглли того уровня, на котором мы их находим в начале VI в. до н. э.

В четвертом и третьем тысячелетиях до нашей эры в нескольких регионах земного шара -- прежде всего в долинах Нила и Инда, в Местопотамии, Малой Азии и Китае - произошел ряд изменений в сфере материального производства, которые в своей совокупности могут быть по праву названы первой в истории человечества технической революцией. Эти изменения последовали вслед за переходом племен, населявших эти регионы, от кочевого образа жизни к оседлому, с чем было связано утверждение земледелия как основной формы производственной деятельности, сопровождавшееся развитием методов обработки земли, ирригации, освоением новых сельскохозяйственных культур и т. д., и, как следствие этого, появление постоянных поселений. К числу великих изобретений, характеризовавших указанную революцию, следует отнести открытие принципа колеса, приведшее, с одной стороны, к изобретению гончарного круга, а с другой -- к появлению новых средств передвижения, далее -- изобретение ткацкого станка, принцип которого остался неизменным вплоть до наших дней, и, наконец, появление металлургического производства, включавшего методы получения и обработки металлов -- сначала бронзы, а потом и железа. Племена, населявшие в третьем и втором тысячелетиях регион Эгейского моря и Балканского полуострова, заимствовали указанные достижения у своих ближневосточных соседей и, как показывают археологические раскопки, довели их до высокой степени совершенства. Это была эпоха крито-микенской цивилизации, которую, впрочем, теперь чаще называют эгейской и которая нашла ретроспективное и потому в каких-то отношениях искаженное отражение в эпических поэмах Гомера. Несмотря на неоднократные вторжения с севера более диких воинственных племен, из которых наиболее значительным и принесшим наибольшие опустошения было нашествие дорийцев в конце XI в. до н. э., какие-то глубинные основы эгейской цивилизации остались нетронутыми. Вслед за так называемым «темным» временем, к которому историки относят X--IX вв. до н. э., в ряде городов Балканского полуострова и особенно на западном побережье Малой Азии происходит постепенное возрождение городской культуры, принимающей, правда, существенно иные формы по сравнению с формами, которые были характерны для крито-микенской эпохи. Наиболее значительные изме, нения произошли в социально-политической области. Вместо абсолютных монархий Эгейского мира, во многом напоминавших аналогичные государственные образования в странах Ближнего Востока, возникает и получает быстрое развитие форма города-государства (полиса), в дальнейшем становящаяся отличительной особенностью греческого мира.

После крушения государственных форм критико-ми-кенской эпохи и в течение всего «темного» времени сельское хозяйство оставалось в Греции основной формой материального производства. О специфике сельскохозяйственной деятельности той эпохи, о проблемах в трудностях, встававших перед греческим крестьянином, и о классовых взаимоотношениях, характерных, правда, уже для конца этого периода, много ценной информации сообщает Гесиод в своей поэме «Труды и дни». С течением времени, однако, во многих греческих государствах местные сельскохозяйственные ресурсы становятся недостаточными для того, чтобы прокормить быстро растущее городское население. В связи с этим наблюдаются два явления, во многом определившие последующий ход греческой истории.

Первое -- это колонизация. Большое число греков покидает свои родные места и отправляется в поисках лучшей жизни в другие страны -- прежде всего в Южную Италию и на берега Черного моря, где имелись большие площади неосвоенных плодородных земель. Новые поселения, которые там основываются, становятся самостоятельными городами-государствами, сохраняющими, однако, тесные экономические и культурные связи с «материнскими» полисами. Наибольшее число таких колоний (понимая это слово не в нынешнем, а в специфическом для того времени смысле) основал Милет, в VIII--VI вв. до н. э. бывший крупнейшим и наиболее процветающим городом Малоазийской Ионии. Из колоний в старые греческие полисы вывозились сельскохозяйственные товары, прежде всего пшеница; взамен жители новых поселений получали из Греции продукты ремесленного производства, использовавшиеся ими как для собственных нужд, так и для торговли с местными аборигенами.

Второе явление, теснейшим образом связанное с первым, состояло в быстром развитии производства товаров, назначавшихся для экспорта. Продукты гончарного производства (знаменитые «греческие вазы»), текстильные товары (которыми особенно славился Милет), всевозможные металлические изделия, украшения из золота и серебра и т. д. направлялись в колонии, а также в другие страны, находившиеся с греческими городами в торговых взаимоотношениях. И хотя ремесло никогда не принадлежало в Греции к числу наиболее уважаемых профессий, тем не менее прослойка ремесленников становилась все более многочисленной и приобретала в наиболее развитых полисах (например, в Афинах), по мере их демократизации, значительное влияние на политическую и общественную жизнь.

Высокий уровень ремесла способствовал развитию эстетических вкусов, но он также требовал определенных интеллектуальных качеств: наблюдательности, сообразительности, мастерства, приобретаемого обучением и опытом. Все эти качества объединялись греческим термином 1есЬпё, который служил обозначением как ремесла, так и искусства. И, действительно, в классической Греции грань между тем и другим была очень неопределенной. Греческие вазы производят на нас зачастую впечатление творений высокого искусства; не случайно создававшие их мастера имели обыкновение ставить на них свои имена, подобно тому, как в наше время художники подписывают свои картины. Эти подписи были не только указанием на авторство, но и своего рода «знаком качества». Имена Фидия, Поликлета, Праксителя известны в наше время любому образованному человеку как имена величайших скульпторов, создавших недосягаемые по своему совершенству произведения искусства; между тем в Древней Греции их общественный статус немногим отличался от статуса гончара или ювелира.

Профессией, сочетавшей в себе черты ремесла и искусства, была также архитектура. Разумеется, создатели греческих храмов сами не обтесывали и не клали камни: они, очевидно, составляли детальный проект здания и руководили работами по его строительству. Эта профессия требовала не только чисто инженерного мастерства и высокоразвитого чувства прекрасного, но также немалой математической подготовки. Величайшим в мире созданием строительного искусства Геродот считал храм Геры на острове Самос, воздвигнутый в период правления тирана Поликрата (вторая половина VI в. до н. э.) и разрушенный после падения последнего. Археологические раскс, ки показали, что этот храм был построен на основе стл гих математических пропорций. Отсюда следует, что уже в то время, совпадавшее со временем первых шагов раней греческой науки, греческие архитекторы обладали ответствующими математическими знаниями и применял их в строительной практике.

Другим интереснейшим инженерным сооружением в, острове Самос, о котором пишет Геродот, был водопровод созданный по проекту Эвпалина и проходивший по туй. нелю, который был прорыт сквозь гору и имел длину около одного километра. Долгое время историки относились к этому сообщению Геродота с недоверием, но в конце XIX в. немецкая археологическая экспедиция действительно обнаружила этот туннель. Самое интересное было то, что в целях ускорения работы туннель рыли одновременно с обеих сторон горы. Впоследствии механик Герои, живший в начале нашей эры, привел в сочинении «Диоптра» геометрическое построение, которое должно было был осуществлено для того, чтобы рабочие, прорывавшие туннель, встретились в середине горы. Это была совсем щ простая задача, требовавшая не только определенны! знаний в области геометрии, но и большой точности I проведении геодезических измерений.

Мастерство инженеров с острова Самос было, по-видимому, широко известно. Во время похода персидского царя Дария на скифов (в 514 г. до н. э.) самосец Манд-рокл построил понтонный мост через Босфор, по которому персидское войско перешло из Азии в Европу. Геродот пишет, что Дарий был очень доволен постройкой моста я щедро одарил Мандрокла. Часть полученной награды Мандрокл пожертвовал на создание фрески в упомянутом выше храме Геры, на которой был изображен царь Дарий, сидящий на берегу пролива на троне и наблюдающий, как его войско переходит по мосту. Через двадцать с лиШ" ним лет аналогичная задача стояла перед сыном Дарий Ксерксом, направлявшимся со своим огромным войском в Грецию. Сообщают, что два первоначальных моста -- из которых один был построен финикиянами, а другой египтянами -- были снесены течением Геллеспонта, после чего царь приказал высечь море ударами бичей. Новые, более прочные мосты были сооружены под руководством греческих инженеров, оказавших тем самым плохую услугу своим соотечественникам.

Быстрый рост греческой торговли, которая шла в ос-яовном морскими путями, сопровождался развитием судостроения, требовавшего высокого технического мастерства. С другой стороны, осуществление далеких морских поездок по Черному и Средиземному морям предъявляло повышенные требования к искусству кораблевождения, которое было невозможно без определенного минимума астрономических знаний. Не случайно легенда приписывает первому греческому ученому Фалесу составление руководства по кораблевождению.

Таким образом, быстрое развитие ремесел и техники было одной из черт, характеризовавших греческий мир VII--VI вв. до н. э. Хотя это развитие и не оказывало непосредственного воздействия на основную проблематику, интересовавшую в то время греческих ученых, тем не менее косвенным образом оно бесспорно послужило стимулом для научного прогресса -- особенно в тех областях, которые первоначально занимали периферийное положение в науке (к ним, в частности, относилась математика, тогда еще не получившая статуса самостоятельной теоретической дисциплины). В связи с этим заметим, что в технически отсталой стране не может существовать благоприятных условий для развития науки: в наше время это утверждение представляется бесспорным, но оно справедливо также и по отношению к той отдаленной эпохе, о которой в данном случае идет речь.

Возникновение ранней греческой науки было связано с общим духовным скачком, который переживала Греция в VI в. до ы. э. и который подчас именуется «греческим яудом». В течение очень короткого срока греки стали культурным лидером среди народов средиземноморского бассейна, опередив более древние и могущественные цивилизации Египта и Вавилона.

Общественной основой этого духовного скачка было Утверждение демократической формы правления в большинстве греческих полисов. Равноправие свободных граждан перед законом и участие каждого в выполнении общественных функций способствовали развитию чувства гражданской ответственности и критичности мышления. Необходимость выступать в народных собраниях и убедительно (т. е. логически обоснованно) защищать свою точку зрения привела к усовершенствованию искусства устной аргументации и, в конечном итоге, к разработке приемов логического доказательства. Относительно малые размеры полисов, исключавшие потребность в громоздкой административной структуре, в сочетании с выборностью государственных и жреческих должностей обусловили отсутствие в греческих полисах сословий чиновников и жрецов, которые играли столь большую роль в централизованных бюрократических монархиях Востока.

Все эти черты были в наибольшей степени характерны для ионийских полисов, расположенных вдоль западного побережья Малой Азии. Но к ним надо добавить еще некоторые специфические особенности, отличавшие приморские торговые города от ряда других областей Греции того времени. Это -- в большей или меньшей степени смешанный этнический состав, развитие мореплавания, торговые и культурные связи со странами Востока и относительная слабость родовой аристократии. Все эти факторы в сочетании с живостью ума и любознательностью -- чертами, всегда отличавшими греков, стимулировали духовную атмосферу свободомыслия и терпимости. Занятия наукой не регламентировались в Ионии государственными или религиозными институтами; они были частным делом свободных граждан и потому не имели сугубо практической направленности, которая была присуща египетской или вавилонской наукам.

Общественно-политическая структура и историко-гео-графическое положение ионийских полисов дают возможность объяснить некоторые характерные черты ранней греческой пауки. Как указывалось выше, одной из таких черт был отказ от религиозно-мифологических мотивировок и образов, обусловленный тем, что греческие ученые наталкивались на разнообразие религиозных представлений и верований, согласовать которые казалось невозмож-ним. Было очевидно, что греческая вера и мифология не имеют общезначимого характера. Антропоморфизация богов, нашедшая столь художественное выражение в поэмах Гомера, стала восприниматься как недостаток общепринятой религии; с наибольшей яркостью такая установка проявилась в поэтических выступлениях Ксенофаиа из Колофона, направленных против антропоморфизма и политеизма традиционных греческих верований. Ионийские мыслители стремились придать своим концепциям общезначимость, сделать их приемлемыми для всех людей, независимо от того, каким богам эти люди поклоняются. Достичь этого можно было лишь путем полного устранения мифологических мотивировок и замены антропоморфных образов безличными и общезначимыми силами природы. Следующая задача состояла в том, чтобы выделить дз этих сил такую, которая могла бы претендовать на положение высшего начала как в генетическом, так и в иерархическом отношении. И в первую очередь, разумеется, речь могла идти о таких стихиях, как огонь, воздух, вода и земля. Вода, как мы указывали выше, отождествлялась с изначальным состоянием мира у многих народов, поэтому выбор воды в качестве первичной космогонической сущности не мог казаться чем-то удивительным; воздух (или ветер) занимал важное место в индо-иранских представлениях, а в сфере микрокосмоса соответствовал душе человека; наконец, огню придавалось особое значение в религии зороастризма.

Указанными соображениями объясняются существенные особенности научно-философских систем, развивавшихся по крайней мере некоторыми из ионийских мыслителей раннего периода.

Ранняя греческая наука о природе

Античная традиция послеаристотелевского времени приписывает большинству сочинений греческих мыслителей VI--V вв. до н. э. одно и то же стандартное наименование -- «О природе». Не следует принимать это наименование за авторское заглавие -- ученые той ранней эпохи еще не имели обыкновения как-либо озаглавливать свои сочинения; его следует скорее рассматривать как указание на их основную проблематику. В связи с этим представляется целесообразным по возможности точнее уяснить смысл греческого понятия «природа», тем более, что этот смысл существенно отличается от того основного значения, которое слово «природа» приобрело в языках нового времени.

В нашу эпоху под природой подразумевается прежде всего окружающая человека естественная среда, в которой он живет, но которая не является делом его рук. Причем в более узком смысле природа отождествляется с совокупностью особенностей почвы, климата, растительного и животного мира и т. д., присущих данному географическому району (стране, климатической зоне, материку) , а в более широком -- под природой может понимать ся весь мир, вселенная в целом, воспринимаемая как органически связанное и в каком-то отношении даже одухотворенное единство. В другом значении, говоря не о природе вообще, а о природе какой-либо конкретной вещи, мы имеем в виду главную характеристику этой вещи, ее основное, чаще всего внутреннее, неявное свойство, или сущность.

...

Подобные документы

    Возрождение интереса к античной культуре. Наука и техника эпохи Возрождения. Новый виток литературы и художественного искусства. Утверждение в Европе веротерпимости, уважения к личности, принципов открытости научного поиска. Корни современной науки.

    реферат , добавлен 10.03.2014

    Эпоха Просвещения как одна из ключевых эпох в истории европейской культуры, связанная с развитием научной, философской и общественной мысли. Развитие науки и техники. Основные достижения деятелей науки. Историческое значение развития науки и техники.

    реферат , добавлен 14.12.2014

    Начало советского периода развития науки. Условия развития науки в военное время. Особенности формирования науки в период первых довоенных и послевоенных пятилеток. Наука после Сталина: реформа Академии 1954-1961 гг. Советская наука в 70-х годах.

    курсовая работа , добавлен 17.01.2011

    Древнейшие произведения греческой прозы. Особое место в истории европейской науки творения Геродота. Этнографические представления Геродота о Египте. Описание месторасположения Египта, свойств почв, предположений по поводу истоков и причин разливов Нила.

    реферат , добавлен 09.06.2014

    Эпохи критской и ахейской культур. Период великой греческой колонизации, его значение и последствия. Особенности греческой общины. Структура, общество и экономическая жизнь полисов. Афины и Спарта - могущественные центры древнегреческой цивилизации.

    реферат , добавлен 02.12.2009

    Возрождение, или Ренессанс как эпоха в истории культуры Европы между Средними веками и Новым временем, примерно с начала XIV века до конца XVI, его общая характеристика и великие представители. Изобретение книгопечатанья и его роль в развитии науки.

    доклад , добавлен 24.06.2013

    Принципат - форма монархии, которая совмещала монархические и республиканские черты. Особенности государственного устройства. Отличительные черты положения принцепса. Сенат эпохи принципата. Народные собрания. Императорский бюрократический аппарат.

    курсовая работа , добавлен 01.02.2013

    Характеристика и сущность периода послевоенного восстановления народного хозяйства, реформ и преобразований, переход от тоталитарного государства к демократическому обществу. Развитие науки, культуры и творчества в годы войны, период "оттепели", "застоя".

    реферат , добавлен 25.10.2011

    Эволюция научного знания, науки и техники в процессе освоения и обустройства окружающего мира в различные исторические эпохи. Набор орудий и инструментов людей палеолита. Лук и стрелы как важнейшее достижение мезолита. Неолит и неолитическая революция.

    контрольная работа , добавлен 16.02.2012

    История и предпосылки появления, направления и этапы развития науки в Европе. Состояние христианства в XVI веке как одного из самых религиозных периодов в истории человечества. Взаимоотношения науки и христианской религии, результаты данного процесса.


13
Контрольная работа на тему:
«Специфика античной науки»
Введение

Термин античность (от лат. Antiquus - древний) употребляется для обозначения всего, что было связано с греко-римской древностью, от гомеровской Греции до падения Западной Римской империи, возник в эпоху Возрождения. Тогда же появились понятия "античная история", "античная культура", "античное искусство", "античный город" и т.д. Понятие "древнегреческая наука", вероятно, впервые было обосновано П. Таннери в конце XIX в., а понятие "античная наука" - С. Я. Лурье в 30-х годах ХХ века.
Своим появлением наука обязана стремлением человека к повышению производительности своего труда и, в конечном итоге, уровня жизни. Постепенно, еще с доисторических времён накапливались знания о природных явлениях и их взаимосвязи.
Одной из первых наук стала астрономия, результатами которой активно пользовались жрецы и священнослужители. В число древних прикладных наук входили геометрия-- наука о точном измерении площадей, объёмов и расстояний -- и механика. В состав геометрии входила и география.
В Древней Греции к VI в. до н. э. сложились наиболее ранние теоретические научные системы, стремившиеся объяснить действительность набором основных положений. В частности, появилась широко распространившаяся на территории Европы система первоэлементов, а философы Левкипп и Демокрит создали первую атомистическую теорию строения вещества, впоследствии развитую Эпикуром. Долгое время наука не была в полной мере отделена отфилософии, а была ее составной частью. Однако уже древние философы выделяли в составе философии космогонию и физику: системы представлений о происхождении и устройстве мира соответственно.
Один из ярчайших представителей древнегреческой философии является Аристотель.Проведя огромное количество наблюдений и составив весьма подробное описание своих представлений о физике и биологии, он тем не менее не проводил экспериментов.
До эпохи научных революций считалось, что создаваемые человеком искусственные условия опыта не могут дать результатов, которые бы адекватно описывали явления, происходящие в природе.
Понятие античной науки

Среди ученых-науковедов наблюдаются две крайние точки зрения в самом понятии науки, находящиеся в радикальном противоречии друг с другом.
Первая точка зрения говорит о том, что наука в собственном смысле слова родилась в Европе лишь в XVI--XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук -- процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу. Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания).
Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков.
Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы пред вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.
Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания -- моделирование механизма природных явлений.
Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.
Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления.
Признаки и с пецифика античной науки

Существуют четыре основных признака античной науки. Эти признаки также являются признаками ее отличия от ненауки предшествующей истории:
1. Наука, как род деятельности по приобретению новых знаний. Для осуществления такой деятельности необходимы определенные условия: специальная категория людей, средства для ее осуществления и достаточно развитые способы фиксации знаний;
2. Самоценность науки, ее теоретичность, стремление к знанию ради самого знания;
3. Рациональный характер науки, что прежде всего выражается в доказательности ее положений и наличии специальных методов приобретения и проверки знаний;
4. Систематичность (системность) научных знаний, как по предметному полю, так по фазам: от гипотезы до обоснованной теории.
Обратившись к античной науке в период ее наивысших достижений можно найти в ней черту принципиально отличающую ее от науки Нового времени. Несмотря на блестящие успехи античной науки эпохи Евклида и Архимеда, в ней отсутствовал важнейший ингредиент, без которого мы теперь не можем представить себе таких наук, как физика, химия, отчасти биология. Этот и т.д.................