На тему: методы получения и очистки дисперсных систем химический факультет - презентация. Методы получения и очистки дисперсных систем От каких примесей очищают дисперсные системы

Существуют два общих подхода к получению дисп. систем – дисперсионный и конденсационный. Дисперсионный метод основан на измельчении макроскопических частиц до наноразмеров (1-100 нм).

Механическое измельчение не получило широкого распространения из-за большой энергоемкости. В лабораторной практике используется ультразвуковое измельчение. При измельчении конкурируют два процесса: диспергирование и агрегирование возникающих частиц. Соотношение скоростей этих процессов зависит от длительности помола, температуры, природы жидкой фазы, присутствия стабилизаторов (чаще всего ПАВ). Подбирая оптимальные условия, можно получить частицы требуемого размера, однако распределение частиц по размерам бывает достаточно широким.

Наиболее интересно самопроизвольное диспергирование тв тел в жидкой фазе. Подобный процесс может наблюдаться для веществ, имеющих слоистую структуру. В таких структурах имеет место сильное взаимодействие между атомами внутри слоя и слабое в-д-в взаимодействие между слоями. Например, сульфиды молибдена и вольфрама, имеющие слоистую структуру, самопроизвольно диспергируются в ацетонитриле с образованием бислойных частиц нанометрового размера. При этом жидкая фаза проникает между слоями, увеличивает межслойное расстояние, взаимодействие между слоями ослабевает. Под действием тепловых колебаний происходит отрыв наночастиц с поверхности тв фазы.

Конденсационные методы подразделяются на физические и химические. Формирование наночастицосущствляется через ряд переходных состояний при образовании промежуточных ансамблей, приводящих к возникновению зародыша новой фазы, спонтанному его росту и появлению физической поверхности раздела фаз. Важно обеспечить высокую скорость образования зародыша и малую скорость его роста.

Физические методы широко используются для получения металлических ульрадисперсных частиц. Эти методы по сути являются дисперсионно-конденсационными. На первой стадии металл диспергируют до атомов при испарении. Затем за счет пересыщения паров происходит конденсация.

Метод молекулярных пучков применяют для получения покрытий толщиной около 10 нм. Исходный материал в камере с диафрагмой нагревают до высоких температур в вакууме. Испарившиеся частицы, проходя через диафрагму, образуют молекулярный пучок. Интенсивность пучка и скорость конденсации частиц на подложке можно менять, варьируя температуру и давление пара над исходным материалом.

Аэрозольный метод заключается в испарении металла в разреженной атмосфере инертного газа при пониженной температуре с последующей конденсацией паров. Этим методом были получены наночастицыAu, Fe, Co, Ni, Ag, Al; их оксидов, нитридов, сульфидов.

Криохимический синтез основан на конденсации атомов металла (или соединений металла) при низкой температуре в инертной матрице.

Химическая конденсация . Коллоидный раствор золота (красного) с размером частиц был получен в 1857 г Фарадеем. Этот золь демонстрируют в Британском музее. Устойчивость его объясняется образованием ДЭС на поверхности раздела тв фаза-раствор и возникновением электростатической составляющей расклинивающего давления.

Часто синтез наночастиц проводят в растворе при протекании химических реакций. Для получения металлических частиц применяют реакции восстановления. В качестве восстановителя используют алюмо- и борогидриды, гипофосфиты и др. Например, золь золота с размером частиц 7 нм получают восстановлением хлорида золота боргидридом натрия.

Наночастицы солей или оксидов металлов получают в реакциях обмена или гидролиза.

В качестве стабилизаторов используют природные и синтетические ПАВ.

Были синтезированы наночастицы смешанного состава. Например, Cd/ZnS, ZnS/CdSe, TiO 2 /SiO 2 . Такие наночастицы получают осаждением молекул одного типа (оболочка) на предварительно синтезированной наночастице другого типа (ядро).

Основной недостаток всех методов – это широкое распределение наночастиц по размерам. Один из методов регулирования размеров наночастиц связан с получением наночастиц в обратных микроэмульсиях. В обратных микроэмульсияхдис фаза – вода, дис среда – масло. Размер капель воды (или другой полярной жидкости) может меняться в широких пределах в зависимости от условий получения и природы стабилизатора. Капля воды играет роль реактора, в котором образуется новая фаза. Размер образующейся частицы ограничен размерами капли, форма этой частицы повторяет форму капли.

Золь-гелевый метод содержит следующие стадии: 1. приготовление исходного раствора, обычно содержащего алкоксиды металлов М(ОR) n , где М-это кремний, титан, цинк, алюминий, олово, церий и др., R- алкал или арил; 2. образование геля за счет реакций полимеризации; 3. сушка; 4. термообработка. В органических растворителях проводят гидролиз

М(ОR) 4 +4H 2 OM(OH) 4 +4ROH.

Затем происходит полимеризация и образование геля

mM(OH) n (MO) 2 +2mH 2 O.

Метод пептизации. Различают пептизацию при промывании осадка, пептизацию осадка электролитом; пептизацию поверхностно-активными веществами; химическую пептизацию.

Пептизация при промывании осадка сводится к удалению из осадка электролита, вызвавщего коагуляцию. При этом толщина ДЭС увеличивается, силы ионно-электростатического отталкивания преобладают над силами межмолекулярного притяжения.

Пептизация осадка электролитомсвязана со способностью одного из ионов электролита адсорбироваться на частицах, что способствует формированию ДЭС на частицах.

Пептизация поверхностно-активными веществами. Макромолекулы ПАВ адсорбируясь на частицах или придают им заряд (ионогенные ПАВ) или формируют адсорбционно-сольватный барьер, препятствующий слипанию частиц в осадке.

Химическая пептизация происходит, когда добавляемое в систему вещество взаимодействует с веществом осадка. При этом образуется электролит, формирующий ДЭС на поверхности частиц.

Получение дисперсных систем связано в первую очередь с получением дисперсных частиц. Нужно решить следующие задачи:

  • 1) распределить дисперсные частицы в дисперсионной среде до необходимой концентрации;
  • 2) стабилизировать дисперсную систему, чтобы сохранить ее структуру и свойства в течение достаточно длительного времени;
  • 3) провести очистку дисперсной системы от различных примесей.

Эти задачи решают в зависимости от специфики (типа) той или иной дисперсной системы.

Получение дисперсных систем

Эмульсии. Поскольку эмульсии -- грубодисперсные системы, их обычно получают диспергационным методом. Жидкости, которые должны образовать эмульсию, интенсивно перемешивают или подвергают воздействию механических вибраций или ультразвука. Чтобы получить капли одинакового размера (т.е. монодисперсную систему), проводят гомогенизацию. Этот процесс заключается в продавливании жидкости дисперсной фазы в дисперсионную среду через небольшие отверстия требуемого диаметра под большим давлением. Такой прием используют, например, при обработке молока. В результате гомогенизации средний размер капель жира уменьшается примерно от 1 --3 до 0,1 --0,2 мкм.

Эмульсии получают также конденсационными методами (обычно -- заменой растворителя).

Самостоятельную задачу представляет получение высококонцентрированных эмульсий. К ним относят эмульсии с концентрацией дисперсной фазы более 74 об. %, вплоть до 99 об. %. Капли дисперсной фазы в таких эмульсиях, имеющие форму многогранных призм, разделены тонкими пленками жидкой дисперсионной среды.

Концентрированные эмульсин могут обладать механическими свойствами твердых тел -- прочностью и упругостью.

Специфика приготовления концентрированных эмульсий заключается в том, что дисперсная фаза вводится в дисперсионную жидкую среду небольшими порциями при интенсивном перемешивании.

Пены. Как и эмульсии, пены -- грубодисперсные системы. Поэтому во многих технологических процессах пены получают теми же диспергационными методами, которые применяют для получения газовых пузырьков.

Конденсационные методы получения пен основаны на пересыщении раствора газа в данной жидкости при соответствующем изменении температуры или давления. Используют также химические реакции с выделением газа. В качестве примера приведем реакцию, лежащую в основе приготовления пены в огнетушителях:

NaHCO 3 + HCl > NaCl + H 2 O+ СО 2 ^

Еще один конденсационный метод получения пен основан на использовании микробиологических процессов.

Коллоидные растворы. Получают коллоидные растворы (золи) различными конденсационными методами. Для получения высокодисперсных золей необходимо обеспечить выполнение следующего условия: скорость образования твердых частиц должна во много раз превышать скорость их роста. Чтобы выполнить это условие, при получении дисперсных частиц с помощью химических реакций часто используют такой способ: концентрированный раствор одного компонента вливают в небольшом количестве в сильно разбавленный раствор другого компонента при очень интенсивном перемешивании.

Гели. Приведенные выше системы являются свободнодисперсными. Получение связнодисперсных систем имеет определенную специфику. Рассмотрим в качестве примера получение гелей. Обычно их получают из коллоидных растворов (золей). При определенных условиях дисперсные частицы слипаются друг с другом -- происходит процесс коагуляции.

Если частицы имеют анизодиаметричсскую форму (стержни, эллипсоиды), то они соединяются преимущественно своими концами и образуют пространственную структуру (сетку), в ячейках которой находится жидкая дисперсионная среда. Процесс превращения золей в гели называют золь--гель-переход. Он имеет важное значение в нанотехнологии. Таким образом, гели, как и концентрированные эмульсии, иногда могут быть биконтинуальными дисперсными системами.

Свойства гелей весьма эффективно регулируют, изменяя концентрацию дисперсной фазы и форму дисперсных частиц. Еще один важный фактор -- температура: ее повышение затрудняет образование контактов между дисперсными частицами и поэтому прочность гелей снижается.

  • III. Препараты, действующие на Рении-ангиотензнвную систему.
  • IV. Средства, понижающие активность глутаматергической системы
  • Коллоидные системы занимают промежуточное положение между грубодисперсными(эмульсии, суспензии)и молекулярными системами. Их получение связано с дроблением до требуемой дисперсности, либо с объединением молекул или ионов в агрегаты коллоидных размеров. Необходимо подобрать дисперсионную среду, в которой частицы не растворяются, и обеспечить устойчивость частиц. Существуют деспергационные и конденсационные методы получения дисперсионных систем.

    Диспергационные методы-это механические методы, к которым относятся дробление, истирание, вибрация, электрические методы.В них для накопления свободной поверхности энергии и преодоления межмолекулярных сил в процессе диспергирования, совершается внешняя механическая работа над системой. Твердые тела при этом раздавливаются, истираются, дробятся. В лабораторных и пром. Условиях процессы дробления производят в дробилках, жерновах и мельницах, чаще всего шаровых. Шаровая мельница состоит из полного цилиндрического барабана, частично заполненного шарами. Измельченный сухой материал помещается в этот цилиндр, где и происходит дробление.

    Конденсационные методы-Это процессы агрегатирования, укрепнения, которые делятся на физические и химические.

    Физическая конденсация связана с конденсацией из паров и замены растворителя. При этом из зародыша возникает новая фаза, путем соединения молекул, атомов, ионов. Метод замены растворителя основан на таком изменении параметров, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и образуется новая фаза.

    Химическая конденсация.Сущность заключается в конденсационном выделение новой фазы из пересыщенного раствора. Вещество новой фазы появляется в результате химической реакции. Реакция окисления, гидролиза, диссоциации, двойного обмена приводят к образованию дисперсных систем.

    Очистка дисперсионных систем.

    Полученные дисперсные системы очищают от примесных молекул или ионов. Очищают также естественные дисперсные системы (сырую нефть, вакцины, сыворотки) Наиболее важным методом очистки является диализ разработанный Грэмом. Коллоидный раствор наливают в сосуд с мембраной, отделяющий его от чистой дисперсионной среды. В результате диффузии все растворимые молекулярные компоненты через мембрану переходят во внешний раствор. Очистка длится несколько суток, для ускорения повышают температуру. Обычно диализ сочетается с ультрафильтрацией через те же мембраны, т.е. диализ ведут при повышенном давлении во внутренней камере.

    12. Оптические свойства дисперсных систем. При падении света на дисперсную систему могут наблюдаться следующие явления:
    1)прохождение света частицами дисперсной фазы;

    2)преломление света частицами дисперсной фазы (если эти частицы прозрачны);

    3)отражение света частицами дисперсной фазы (если частицы непрозрачны);

    4)рассеяние света;

    5)адсорбция (поглощение) света дисперсной фазой с превращением световой энергии в тепловую.

    Характер наблюдаемых явлений зависит от размеров частиц дисперсной фазы и их соотношения с длиной волны (λ) падающего света. Прохождение света наблюдается для прозрачных систем, в которых частицы много меньше длины волны падающего света (r<<λ). Преломление и отражение света наблюдается для систем, в которых частицы много больше длины волны падающего света (r>>λ). Визуально это явление выражается в мутности этих систем.

    Рассеяние света наблюдается для систем, в которых частицы дисперсной фазы меньше, но соизмеримы с длиной волны падающего света (r ≈ 0.1 λ). Именно такое соотношение выполняется для коллоидных растворов. В проходящем свете коллоидные системы прозрачны, а при боковом освещении рассеивают падающий на них свет, поэтому пучок людей в коллоидной системе виден как яркий светящийся конус

    Оптические свойства коллоидных систем используют при изучении размеров, формы, структуры и концентрации коллоидных частиц

    Методы конденсации по сравнению с методами диспергирования дают возможность получать коллоидные системы более высокой дисперсности. Кроме того, они обычно не связаны с применением специальных машин.

    Конденсационные методы получения дисперсных систем основаны на создании условий, при которых будущая дисперсионная среда пересыщается веществом будущей дисперсной фазы. В зависимости от способов создания этих условий конденсационный метод подразделяют на физический и химический .

    К физической конденсации относятся:

    а) Конденсация паров при пропускании их через холодную жидкость, в результате чего образуются лиозоли. Так, при пропускании паров кипящей ртути, серы, селена в холодную воду образуются их коллоидные растворы.

    б) Замена растворителя . Метод основан на том, что вещество, из которого хотят получить золь, растворяют в подходящем растворителе, затем добавляют вторую жидкость, являющуюся плохим растворителем для вещества, но хорошо смешивающуюся с исходным растворителем. Растворенное первоначально вещество выделяется из раствора в высокодисперсном состоянии. Например, таким путем можно получить гидрозоли серы, фосфора, канифоли, парафина и многих других органических веществ, вливая их спиртовый раствор в воду.

    Химическая конденсация отличается от всех рассмотренных выше методов тем, что диспергируемое вещество берут не в готовом виде, а получают непосредственно в растворе химической реакцией, в результате которой образуется нерастворимое в данной среде нужное соединение. Задача сводится к тому, чтобы получить выпадающий осадок в мелкодисперсном состоянии. При сливании растворов необходимо добиться таких условий, чтобы возникло много центров кристаллизации, тогда образующиеся кристаллики будут очень маленького размера. Оптимальные условия получения золей (концентрация растворов, порядок сливания, скорость сливания, соотношение компонентов, температура) обычно находят опытным путем.

    В методах химической конденсации используются любые реакции, ведущие к образованию новой фазы: реакция двойного обмена, разложения, окисления-восстановления и т.д. Можно использовать электрохимические реакции, например, восстановление металлов электролизом.

    Ниже приведены некоторые примеры синтеза коллоидных систем с использованием различных реакций. Стабилизатором коллоидного раствора служит обычно один из участников реакции или побочный продукт, из которых на границе раздела частица – среда образуются адсорбционные слои ионного или молекулярного типа, препятствующие слипанию частиц и выпадению их в осадок.

    При взаимодействии газообразных NH 3 и HCl образуется аэрозоль (дым) твердого хлорида аммония (реакция соединения):

    NH 3 + HCl = NH 4 Cl

    Реакцией тиосульфата натрия с серной кислотой можно получить гидрозоль серы (реакция окисления-восстановления):

    Na 2 S 2 O 3 + H 2 SO 4 = S¯ + Na 2 SO 4 + SO 2 + H 2 O

    Многие золи можно синтезировать с помощью реакций обмена:

    Na 2 SiO 3 + 2HCl = H 2 SiO 3 ¯ + 2NaCl

    KJ + AgNO 3 = AgJ¯ + KNO 3 .

    Полученные золи загрязнены примесями низкомолекулярных веществ.

    Очистка дисперсных систем

    Для очистки дисперсных систем от растворенных низкомолекулярных веществ Грэм предложил воспользоваться способностью мелкопористых пленок (мембран) задерживать частицы дисперсной фазы и свободно пропускать ионы и молекулы. Этот способ назван диализом .

    Очищаемую дисперсную систему помещают в сосуд, изготовленный из мелкопористого материала, или имеющий мелкопористое дно (рис. 9.33 а). Сосуд омывается проточной водой (дистиллированной). Согласно законам диффузии, ионы и молекулы растворенного вещества, содержащиеся в дисперсной системе в виде примесей, проникают через поры мембраны в дистиллированную воду, а частицы дисперсной фазы задерживаются и остаются в дисперсной системе.


    Рис. 9.33. Схемы диализатора (а) и электродиализатора (б)

    Скорость диализа очень мала, но ее можно значительно увеличить (в 10-20 раз), воспользовавшись действием электрического поля на ионы растворенной примеси. Такой метод очистки дисперсных систем от примесей электролитов называют электродиализом .

    Электродиализатор (рис.9.33. б) - это сосуд, разделенный мембранами на три отсека, из которых средний заполняют очищаемой дисперсной системой, а в крайних размещены электроды; через эти же отсеки циркулирует жидкость, однородная с веществом дисперсионной среды очищаемой системы. При наложении на электроды достаточной разности потенциалов (несколько сот вольт) дисперсная система относительно быстро очищается от электролита.

    В настоящее время диализ используют во многих производствах. Особенно эффективен он в медицине. Например, на принципе электролиза основано действие аппарата «искусственная почка», позволяющего очищать кровь больного от вредных продуктов жизнедеятельности организма.

    Ультрафильтрация – метод очистки золей путем продавливания дисперсионной среды с низкомолекулярными примесями через ультрафильтры. Ультрафильтры – это мембраны с таким размером пор, через которые проходят примеси и растворитель, но не проходят частицы золя (или высокомолекулярных соединений).

    В мешочек, изготовленный из ультрафильтра, наливают очищаемый золь и под давлением продавливают его через мембрану. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. В мешочке остается чистый золь.

    Таким образом, для получения дисперсных систем используют как методы измельчения крупных частиц (диспергирование ), так и методы, основанные на объединении молекулярных частиц до размеров коллоидных (конденсация ). Диспергационные методы позволяют получать грубодисперсные системы с крупными размерами частиц. Конденсационные методы позволяют получать высокодисперсные золи. Очистку дисперсных систем от низкомолекулярных примесей осуществляют с помощью мелкопористых фильтров – мембран .

    Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

    Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость.

    Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

    Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

    Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

    В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

    Физические методы конденсации:

    1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

    2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

    Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

    Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

    Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

    В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

    Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

    С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

    Методы очистки:

    1. Диализ – очистка золей от примесей с помощью полупроницаемых мембран, омываемых чистым растворителем.

    2. Электродиализ – диализ, ускоренный за счет электрического поля.

    3. Ультрафильтрация – очистка путем продавливания дисперсионной среды вместе с низкомалекулярными примесями через полупроницаемую мембрану(ультрафильтр).

    Малекулярно-кинетические и оптические свойства дисперсных систем: броуновское движение, осмотическое давление, диффузия, седиментационное равновесие, седиментационный анализ, оптические свойства дисперсных систем.

    Все молеклярно-кинетические свойства обусловлены самопроизвольны движением молекул и проявляются в броуновском движении, диффузии, осмосе, седиментауионном равновесии.

    Броуновским называют непрерывное, хоатичное, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкости или газах, за счет воздействия молекул дисперсионной среды. Теория броуновского движения исходит из представления о взаимодействии случайной силы, которая характеризует удары молекул, силы, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде с определенной скоростью.

    Кроме поступательного движения возможно и вращательное, характерно для двухмерных частиц неправильной формы (нитей, волокон, хлопьев). Броуновское движение наиболее ярко выражено у высокодисперсных систем, а его интенсивность зависит от дисперсности.

    Диффузия – самопроизвольное распространение вещества из области с большей концентрацией в область меньшей концентрацией. Различают следующие виды:

    1.)молекулярную

    3)коллоидные частицы.

    Скорость диффузии в газах наибольшая, а в твердых телах – наименьшая.

    Осмотическое давление – это такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. ОД возникает при движении чистогорастворителя в сторону раствора или от более разбавленного раствора в сторону более концентрированного, а следовательно связано с раностью концентрацией растворенного вещества и растворителя. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы оно в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор).

    Седиментация – это расслоение дисперсных систем под действием силы тяжести с отделением дисперсной фазы в виде осадка. Способность дисперсных систем к седиментации является показателем их седиментационной устойчивости. Процессы расслоения применяют тогда, когда требуется выделить тот или иной компонент из какого-то компонента из какого-то природного или искусственно приготовленного продукта, представляющего собой гетерогенную жидкостную систему. В одних случаях из системы извлекают ценный компонент, в других удаляют нежелательные примеси. В общественном питании процессы расслоения дисперсных систем необходимы, когда требуется получить прозрачные напитки, осветилить бульон, освободить его от частиц мяса.

    Поведение луча света, встречающего на пути частицы дисперсной фазы, зависит о соотношения длины волны света и размеров частиц. Если размеры частиц больше длины световой волны, то свет отражается от поверхности частиц под определенным углом. Это явление наблюдается в суспензиях. Если размеры частиц меньше длины световой волны, то свет рассеивается.