Проксима центавра расстояние до земли. Внесистемная позиция

> > Сколько займет путешествие до ближайшей звезды?

Узнайте, как долго лететь к ближайшей звезде : самая близкая звезда к Земле после Солнца, расстояние к Проксима Центавра, описание запусков, новые технологии.

Современное человечество тратит усилия на освоения родной Солнечной системы. Но сможем ли мы отправиться на разведку к соседней звезде? И сколько времени займет путешествие до ближайшей звезды ? На это можно ответить очень просто или же углубиться в область научной фантастики.

Если говорить с позиции сегодняшних технологий, то реальные цифры отпугнут энтузиастов и мечтателей. Давайте не будем забывать, что космические дистанции невероятно огромные, а наши ресурсы все еще ограничены.

Ближайшая звезда к планете Земля – . Это средний представитель главной последовательности. Но вокруг нас сосредоточено множество соседей, так что уже сейчас можно создать целую карту маршрутов. Вот только, как долго туда добираться?

Какая звезда является ближайшей

Ближе всего к Земле расположена звезда Проксима Центавра, так что пока следует строить свои расчеты на основе ее характеристик. Входит в состав тройной системы Альфа Центавра и отдалена от нас на расстояние 4.24 световых лет. Это изолированный красный карлик, расположенный в 0.13 световых лет от двойной звезды.

Как только всплывает тема межзвездных путешествий, все тут же вспоминают о скорости деформации и прыжках в червоточины. Но все они либо пока недостижимы, либо абсолютно невозможны. К сожалению, на любую дальнюю миссию уйдет не одно поколение. Начнем разбор с самых медленных способов.

Сколько займет путешествие до ближайшей звезды сегодня

Легко делать расчет на основе уже имеющейся техники и пределах нашей системы. Например, миссия «Новые Горизонты» использовала 16 двигателей, функционирующих на гидразиновом монотопливе. Чтобы добраться до , потребовалось 8 часов 35 минут. А вот миссия SMART-1 основывалась на ионных двигателях и добиралась к земному спутнику 13 месяцев и две недели.

Значит, у нас есть несколько вариантов транспортного средства. К тому же можно использовать или в качестве гигантской гравитационной рогатки. Но если мы планируем отправиться так далеко, нужно проверить все возможные варианты.

Сейчас мы говорим не только о существующих технологиях, но и о тех, которые в теории можно создать. Некоторые из них уже проверены на миссиях, а другие пока только оформлены в виде чертежей.

Ионная сила

Это наиболее медленный способ, зато экономичный. Еще несколько десятков лет назад ионный двигатель считался фантастическим. Но сейчас его используют во многих аппаратах. Например, миссия SMART-1 с его помощью добралась к Луне. В этом случае использовался вариант с солнечными батареями. Таким образом, он потратил всего 82 кг ксенонового топлива. Здесь мы выигрываем по эффективности, но точно не в скоростях.

Впервые ионным двигателем воспользовались для Deep Space 1, летевшего к (1998 год). Аппарат использовал тот же тип двигателя, что и SMART-1, потратив всего 81.5 кг пропеллента. За 20 месяцев путешествия ему удалось разогнаться до 56000 км/ч.

Ионный тип считается намного экономичным, чем ракетные технологии, потому что тяга на единицу массы взрывчатого вещества намного выше. Но на ускорение уходит много времени. Если бы их планировали использовать для поездки от Земли к Проксима Центавра, то понадобилось бы очень много ракетного топлива. Хотя можно взять за основу предыдущие показатели. Итак, если аппарат будет двигаться на скорости в 56000 км/ч, то дистанцию в 4.24 световых года он преодолеет за 2700 человеческих поколений. Так что вряд ли его используют для пилотируемой полетной миссии.

Конечно, если заправить его огромным количеством топлива, то можно увеличить скорость. Но время прибытия все равно займет стандартную человеческую жизнь.

Помощь от гравитации

Это популярный метод, так как позволяет использовать орбиту и планетарную гравитацию, чтобы изменить маршрут и скорость. Им часто пользуются для путешествий к газовым гигантам, чтобы увеличить скорость. Впервые это попробовал Маринер-10. Он полагался на гравитацию Венеры, чтобы достичь (февраль 1974 год). В 80-е Вояджер-1 использовал спутники Сатурна и Юпитера, чтобы разогнаться до 60000 км/ч и перейти в межзвездное пространство.

Но рекордсменом по скорости, добытой при помощи силы тяжести, стала миссия Гелиос-2, отправившаяся на изучение межпланетной среды в 1976 году.

Из-за большого эксцентриситета 190-дневной орбиты, аппарат смог разогнаться до 240000 км/ч. Для этого использовалась исключительно солнечная гравитация.

Что ж, если мы отправим Вояджер-1 на скорости в 60000 км/ч, то придется ждать 76000 лет. У Гелиос-2 на это ушло бы 19000 лет. Это быстрее, но недостаточно.

Электромагнитный привод

Есть еще один способ – радиочастотный резонансный двигатель (EmDrive), предложенный Роджером Шавиром в 2001 году. Он базируется на том, что электромагнитные микроволновые резонаторы могут позволить преобразить электрическую энергию в тягу.

Если обычные электромагнитные двигатели предназначены для движений конкретного типа массы, то этот не использует реакционную массу и не вырабатывает направленного излучения. Этот вид был встречен с огромной долей скептицизма, потому что нарушает закон сохранения импульса: система импульса внутри системы остается постоянной и изменяется только под действием силы.

Но недавние эксперименты потихоньку переманивают к себе сторонников. В апреле 2015 года исследователи заявили, что успешно протестировали диск в вакууме (значит, может функционировать в космосе). В июле они уже построили свою версию двигателя и выявили заметную тягу.

В 2010 году за серию статей принялась Хуан Ян. Она закончила финальной работой в 2012 году, где сообщила о более высокой входной мощности (2.5 кВт) и испытанных условиях тяги (720 мН). В 2014 году она также добавила некие подробности об использовании внутренних температурных изменений, подтвердивших работоспособность системы.

Если верить расчетам, аппарат с таким двигателем, может долететь к Плутону за 18 месяцев. Это важные результаты, ведь отображают 1/6 времени, которое потратил Новые Горизонты. Звучит неплохо, но даже в этом случае для путешествия к Проксима Центавра придется потратить 13000 лет. Тем более, что у нас все еще нет 100% уверенности в ее эффективности, поэтому нет смысла садиться за разработку.

Ядерное тепловое и электрооборудование

Вот уже несколько десятков лет НАСА исследует ядерные двигатели. В реакторах используют уран или дейтерий, чтобы нагреть жидкий водород, трансформируя его в ионизированный водородный газ (плазма). Затем его отправляют через сопло ракеты для формирования тяги.

Ракетно-ядерная электростанция вмещает тот же исходный реактор, который трансформирует тепло и энергию в электрическую энергию. В обоих случаях ракета рассчитывает на ядерное расщепление или слияние, чтобы генерировать двигательные установки.

Если сравнивать с химическими двигателями, то получаем ряд преимуществ. Начнем с неограниченной плотности энергии. Кроме того, гарантируется более высокая тяга. Это снизило бы уровень потребления топлива, а значит, уменьшило бы массу запуска и стоимость миссий.

Пока не было еще ни одного запущенного ядерно-теплового двигателя. Но существует множество концепций. Они начинаются с традиционных твердых конструкций до основанных на жидком или газовом ядре. Несмотря на все эти преимущества, наиболее сложная концепция достигает максимального удельного импульса в 5000 секунд. Если использовать подобный двигатель для поездки на , когда планета находится в 55000000 км (позиция «противостояния»), то на это уйдет 90 дней.

Но, если мы направим его к Проксима Центавра, то понадобятся столетия для разгона, чтобы перешел на скорость света. После этого ушло бы несколько десятков лет на поездку и еще столетия на замедление. В целом, срок сокращается до тысячи лет. Прекрасно для межпланетных поездок, но все еще не годится для межзвездных.

В теории

Наверное, вы уже поняли, что современные технологии довольно медленные для преодоления таких длинных дистанций. Если мы хотим выполнить подобное за одно поколение, то нужно придумать нечто прорывное. И если червоточины все еще пылятся на страничках фантастических книг, то мы располагаем несколькими реальными идеями.

Ядерное импульсное движение

Этой идеей занимался Станислав Улам еще в 1946 году. Проект стартовал в 1958 году и продолжался до 1963 года под названием Орион.

В Орионе планировали использовать мощь импульсивных ядерных взрывов для создания сильного толчка с высоким удельным импульсом. То есть, мы имеет крупный космический корабль с огромнейшим запасом термоядерных боеголовок. Во время сбрасывания, мы используем детонационную волну на задней площадке («толкатель»). После каждого взрыва подушка толкателя поглощает силу и переводит тягу в импульс.

Естественно, в современном мире метод лишен изящества, но зато гарантирует необходимый импульс. По предварительным оценкам, в таком случае можно достичь 5% от скорости света (5.4 х 10 7 км/ч). Но конструкция страдает от недостатков. Начнем с того, что такой корабль обойдется очень дорого, да и весил бы он 400000-4000000 тонн. Причем ¾ веса представлено ядерными бомбами (каждая из них достигает 1 метрической тонны).

Общая стоимость запуска выросла бы на те времена до 367 миллиардов долларов (на сегодняшние – 2.5 триллионов долларов). Есть также и проблема с создаваемым излучением и ядерными отходами. Полагают, что именно из-за этого проект остановили в 1963 году.

Ядерное слияние

Здесь используют термоядерные реакции, за счет которых создается тяга. Энергия производится, когда гранулы дейтерия/гелия-3 зажигаются в реакционном отсеке через инерционное удержание с использованием электронных лучей. Такой реактор будет детонировать 250 гранул в секунду, создавая высокоэнергетическую плазму.

В такой разработке экономится топливо и создается особый импульс. Достижимая скорость – 10600 км (значительно быстрее стандартных ракет). В последнее время этой технологией интересуется все больше людей.

В 1973-1978 гг. Британское межпланетное общество создало технико-экономическое исследование – проект Дедал. Он основывался на современных знаниях технологии слияния и наличия двухступенчатого беспилотного зонда, который смог бы добраться к звезде Барнарда (5.9 световых лет) за одну жизнь.

Первый этап проработает 2.05 лет и разгонит корабль до 7.1% скорости света. Потом его сбросят и запустится двигатель, увеличив скорость до 12% за 1.8 лет. После этого двигатель второй ступени остановится и судно будет добираться 46 лет.

В целом, к звезде корабль доберется за 50 лет. Если направить его к Проксима Центавра, то время сократится до 36 лет. Но и эта технология столкнулась с препятствиями. Начнем с того, что гелий-3 придется добывать на Луне. А реакция, которая активирует движение космического корабля, требует, чтобы выделяемая энергия превышала энергию, которую используют для запуска. И хотя тестирование прошло хорошо, у нас все еще нет необходимого вида энергии, который смог бы подпитать межзвездный космический корабль.

Ну и не будем забывать о деньгах. Один запуск ракеты весом в 30 мегатонн обходится НАСА в 5 миллиардов долларов. Так вот проект Дедал весил бы 60000 мегатонн. Кроме того, понадобится новый вид термоядерного реактора, которые также не вписывается в бюджет.

Прямоточный воздушно-реактивный двигатель

Эту идею предложил Роберт Буссард в 1960 году. Можно считать это улучшенной формой ядерного слияния. В нем используют магнитные поля для сжатия водородного топлива до момента активации слияния. Но здесь создается огромная электромагнитная воронка, которая «вырывает» водород из межзвездной среды и сбрасывает в реактор как топливо.

Корабль будет набирать скорость, и заставит сжатое магнитное поле достигнуть процесса термоядерного синтеза. После оно перенаправит энергию в виде выхлопных газов через форсунку двигателя и ускорит движение. Без использования другого топлива можно достичь 4% от скорости света и отправляться в любую точку галактики.

Но у этой схемы огромная куча недостатков. Сразу же возникает проблема сопротивления. Кораблю необходимо увеличивать скорость, чтобы накопить топливо. Но он сталкивается с огромным количеством водорода, поэтому может замедлиться, особенно попав в плотные регионы. К тому же в космосе очень сложно найти дейтерий и тритий. Зато эту концепцию часто используют в фантастике. Наиболее популярный пример – «Звездный Путь».

Лазерный парус

В целях экономии уже очень давно применяют солнечные паруса для передвижений аппаратов по Солнечной системе. Они легкие и дешевые, к тому же не требуют топлива. Парус использует радиационное давление от звезд.

Но, чтобы использовать подобную конструкцию для межзвездной поездки, необходимо управлять им сфокусированными энергетическими лучами (лазеры и микроволны). Только так его можно разогнать к отметке близкой к скорости света. Эту концепцию разработал Роберт Форд в 1984 году.

Суть в том, что все преимущества солнечного паруса сохраняются. И хотя лазеру потребуется время на ускорение, но ограничение состоит лишь в скорости света. Исследование 2000-го года показало, что лазерный парус может разгоняться до половины скорости света и тратит на это меньше 10 лет. Если размер паруса будет 320 км, то он доберется до точки назначения за 12 лет. А если увеличить его до 954 км, то за 9 лет.

Но для его производства необходимо использовать передовые композиты, чтобы избежать плавления. Не забывайте, что он должен достигать огромных размеров, поэтому цена будет большой. К тому же придется потратиться на создание мощного лазера, который смог бы обеспечить управление на таких больших скоростях. Лазер потребляет постоянный ток в 17000 теравватт. Чтобы вы понимали, это то количество энергии, которое за один день потребляет вся планета.

Антиматерия

Это материал, представленный античастицами, которые достигают той же массы, что и обычные, но обладают противоположным зарядом. Такой механизм будет использовать взаимодействие между материей и антиматерией, чтобы сгенерировать энергию и создать тягу.

В общем, в таком двигателе задействованы частицы водорода и антиводорода. Причем в подобной реакции освобождается столько же энергии, как и в термоядерной бомбе, а также волна субатомных частиц, перемещающихся на 1/3 скорости света.

Плюс этой технологии в том, что большая часть массы преобразуется в энергию, что позволит создать более высокую плотность энергии и удельный импульс. В итоге, мы получим наиболее быстрый и экономичный космический корабль. Если у обычной ракеты уходит тонны химического топлива, то двигатель с антивеществом расходует на те же действия всего несколько миллиграммов. Такая технологии станет прекрасным вариантом для поездки на Марс, но ее нельзя применить к другой звезде, потому что количество топлива растет в геометрической прогрессии (вместе с затратами).

Для двухступенчатой ракеты с антивеществом потребуется 900000 тонн топлива для 40-летнего полета. Сложность в том, что для добычи 1 грамма антивещества понадобится 25 миллионов миллиардов киловатт-часов энергии и более триллиона долларов. Сейчас мы располагаем лишь 20 нанограммами. Зато такое судно способно разгоняться до половины скорости света и долететь до звезды Проксима Центавра в созвездии Центавра за 8 лет. Но весит оно 400 Мт и тратит 170 тонн антиматерии.

В качестве решения проблемы предложили разработку «Вакуум антиматериальной ракетной межзвездной исследовательской системы». Здесь можно было бы использовать крупные лазеры, создающие частицы антивещества при выстреле в пустом пространстве.

Идея также основана на использовании топлива из пространства. Но снова возникает момент дороговизны. К тому же, человечество просто не может создать такое количество антиматерии. Есть также риск радиации, ведь аннигиляция вещества-антивещества может создать взрывы высокоэнергетических гамма-лучей. Потребуется не только защитить экипаж специальными экранами, но и оборудовать двигатели. Поэтому средство уступает по практичности.

Пузырь Алькубьерре

В 1994 году ее предложил мексиканский физик Мигель Алькубьерре. Он хотел создать средство, которое не нарушало бы специальную теорию относительности. Он предлагает растягивание ткани пространства-времени в волне. Теоретически это приведет к тому, что дистанция впереди объекта сократится, а сзади расширится.

Корабль, попавший внутрь волны, сможет передвигаться за пределами релятивистких скоростей. Сам корабль в «пузыре деформации» двигаться не будет, поэтому правила пространства-времени не применимы.

Если говорить о скорости, то это «быстрее света», но в том смысле, что корабль достигнет назначения быстрее, чем луч света, вышедший за пределы пузыря. Расчеты показывают, что он прибудет к месту назначения за 4 года. Если размышлять в теории, то это наиболее быстрый метод.

Но эта схема не учитывает квантовую механику и технически аннулируется Теорией всего. Расчеты количества необходимой энергии также показывали, что потребуется чрезвычайно огромная мощность. И это мы еще не коснулись тем безопасности.

Однако, в 2012 году были разговоры о том, что этот метод тестируется. Ученые утверждали, что построили интерферометр, который сможет найти искажения в пространстве. В 2013 году в Лаборатории реактивного движения проводили эксперимент в условиях вакуума. В выводе результаты показались неубедительными. Если углубиться, то можно понять, что эта схема нарушает один или несколько фундаментальных законов природы.

Что же из этого следует? Если вы надеялись совершить вояж на звезду туда и обратно, то шансы невероятно низкие. Но, если бы человечество решилось построить космический ковчег и отправить людей в вековое путешествие, то все возможно. Конечно, пока это лишь разговоры. Но ученые занимались бы подобными технологиями активнее, если бы нашей планете или системе угрожала реальная опасность. Тогда поездка на другую звезду была бы вопросом выживания.

Пока мы можем лишь бороздить и осваивать просторы родной системы, надеясь, что в будущем появится новый способ, позволивший реализовать межзвездные транзиты.

С помощью телескопов Европейской Южной Обсерватории (ESO) астрономам удалось совершить очередное удивительное открытие. На этот раз они обнаружили точные доказательства существования экзопланеты, вращающейся по орбите вокруг самой близкой к Земле звезды – Проксима Центавра. Мир, названный Проксима Центавра b (Proxima Centauri b), был давно разыскиваем учёными всей Земли. Теперь же, благодаря его открытию, установлено, что период его обращения вокруг родной звезды (год) составляет 11 земных дней, а температура поверхности этой экзопланеты является подходящей для возможности нахождения воды в жидком виде. Сам по себе этот каменный мир немного более крупный, чем Земля и, также как и звезда, стал самым близким к нам из всех подобных космических объектов. К тому же, это не просто самая близка к Земле экзопланета, это и самый близкий мир, пригодный для существования жизни.

Проксима Центавра является красным карликом, а расположена она на расстоянии 4.25 световых лет от нас. Своё название звезда получила не просто так – это ещё одно подтверждение близости к Земле, поскольку proxima переводится с латинского как “ближайшая”. Эта звезда расположена в созвездии Центавра, а светимость её настолько слаба, что её совершенно невозможно заметить невооружённым глазом, да к тому же она находится довольно близко к намного более яркой паре звёзд α Центавра AB.

Во время первой половины 2016 года Проксима Центавра регулярно исследовалась с помощью спектрографа HARPS, установленного на 3.6-метровом телескопе в Чили, а также одновременно другими телескопами со всего мира. Изучалась звезда в рамках кампании Pale Red Dot (бледная красная точка или красное пятнышко), во время которой учёные из Лондонского университета изучали колебания звезды, вызываемые присутствием на её орбите неустановленной экзопланеты. Название этой программы является прямой отсылкой к знаменитому изображению Земли с далёких рубежей Солнечной Системы. Тогда Карл Саган назвал этот снимок (голубое пятнышко). Так как Проксима Центавра является красным карликом, то и название программы было скорректировано.

Поскольку эта тема поиска экзопланеты вызвала широкий общественный интерес, прогресс учёных в этой работе с середины января по апрель 2016 году постоянно публично публиковался на собственном веб-сайте программы и через социальные медиа. Эти отчёты сопровождались многочисленными статьями, написанными специалистами со всего мира.

“Первые намёки на возможность существования здесь экзопланеты мы получили , но наши данные тогда оказались неубедительными. С тех пор мы упорно работали, чтобы улучшить наши наблюдения с помощью Европейской Обсерватории и других организаций. Так, например, планирование этой кампании заняло приблизительно два года”, – Гильем Англада-Эскуде, руководитель исследовательской команды.

Данные кампании Pale Red Dot, в объединении с более ранними наблюдениями, проведёнными в обсерваториях ESO и других, показали наличие чёткого сигнала присутствия экзопланеты. Было очень точно установлено, что время от времени Проксима Центавра приближается к Земле на скорости 5 километров в час, что равно обычной человеческой скорости, а затем отдаляется на той же скорости. Этот регулярный цикл изменения радиальных скоростей повторяется с периодом 11.2 дней. Тщательный анализ результирующих Доплеровских смещений указал на присутствие здесь планеты с массой, по крайней мере, в 1.3 раза больше массы Земли на расстоянии 7 миллионов километров от Проксимы Центавра, что составляет всего 5 процентов расстояния от Земли до Солнца. Вообще, подобное обнаружение стало технически возможно лишь в последние 10 лет. Но, фактически, сигналы даже с меньшими амплитудами были обнаружены и ранее. Однако звёзды не гладкие газовые шары, а Проксима Центавра очень активная звезда. Поэтому, точно обнаружение Проксима Центавра b стало возможно только после получения подробного описания того, как звезда изменяется на временных масштабах от минут до десятилетий, и контроля её светимости светоизмерительными телескопами.

“Мы продолжили проверять данные, чтобы полученный сигнал не противоречил тому, что мы обнаружили. Это делалось каждый день ещё в течение 60 дней. После первых десяти дней у нас появилась уверенность, через 20 дней мы поняли, что наш сигнал соответствует ожиданиям, а уже через 30 дней все данные категорически утверждали об открытии экзопланеты Проксима Центавра b, поэтому мы начали готовить статьи по этому событию”.

Красные карлики, такие как Проксима Центавра, являются активными звёздами и имеют в своём арсенале много уловок, чтобы иметь возможность подражать присутствию экзопланеты на их орбитах. Чтобы исключить эту погрешность, исследователи контролировали изменение яркости звезды с помощью телескопа ASH2 в обсерватории Сан-Педро-де-Атаками в Чили и сети телескопов Las Cumbres Observatory. Информация о радиальных скоростях, когда светимость звезды увеличивалась, была исключена из окончательного анализа.

Несмотря на то, что Проксима Центавра b вращается намного ближе к своей звезде, чем Меркурий вокруг Солнца, сама Проксима Центавра намного более слаба нашего светила. В результате этого обнаруженная экзопланета располагается точно в области вокруг звезды, пригодной для существования жизни в том виде, в котором мы её знаем, а предполагаемая температура её поверхности позволяет присутствовать воде в жидком виде. Несмотря на такую умеренную орбиту, условия существования на её поверхности могут находиться под очень сильным влияние ультрафиолетового излучения и рентгеновских вспышек от звезды, которые намного более интенсивны, чем те эффекты, которые оказывает Солнце на Землю.

Фактическая возможность этого вида планеты поддерживать жидкую воду и иметь жизнь, подобную земной, является вопросом интенсивных, но, главным образом, теоретических дебатов. Главные аргументы, которые говорят против присутствия жизни, связаны с близостью Проксимы Центавра. Например, на Проксима Центавра b могут быть созданы такие условия, при которых она всегда обращена к звезде одной стороной, из-за чего на одной половине вечная ночь, а на другой вечный день. Атмосфера планеты могла бы также медленно испариться или иметь более сложную химию, чем земная, из-за сильного ультрафиолетового и рентгеновского излучения, особенно в течение первого миллиарда лет жизни звезды. Однако до сих пор ни один аргумент не был доказан окончательно, и вряд ли они будут устранены без прямых наблюдательных доказательств и получения точных характеристик атмосферы планеты.


Две отдельные работы были посвящены обитаемости Проксима Центавра b и её климату. Установлено, что сегодня нельзя исключать существование жидкой воды на планете, и в таком случае она может присутствовать на поверхности планеты только в самых солнечных регионах, либо в области полушария планеты, всегда обращённого к звезде (синхронное вращение), или в тропическом поясе (3:2 резонансное вращение). Быстрое движение Проксима Центавра b вокруг звезды, сильное излучение Проксимы Центавра и история формирования планеты сделали климат на ней совершенно не таким, как на Земле, и маловероятно, что Проксима Центавра b вообще обладает сезонами.

Так или иначе, это открытие станет началом масштабных дальнейших наблюдений, как с текущими приборами, так и с последующим поколением гигантских телескопов, таких как Европейской Чрезвычайно Большой Телескоп (E-ELT). В последующие годы Проксима Центавра b станет главной целью для поиска жизни в другой точке Вселенной. Это вполне символично, поскольку система Альфа Центавра выбрана также целью первой попытки человечества переместиться в другую звёздную систему. Проект Breakthrough Starshot – это научно-исследовательский и инженерный проект в рамках программы Breakthrough Initiatives по разработке концепции флота космических кораблей, использующих световой парус, под названием StarChip. Такой тип космических кораблей будет способен совершить путешествие к звездной системе Альфа Центавра, удаленной на 4,37 световых лет от Земли, со скоростью между 20 и 15 процентов от скорости света, что займет от 20 до 30 лет соответственно и еще около 4 лет, чтобы уведомить Землю об успешном прибытии.

В заключении хочется отметить, что многие точные методы поиска экзопланет основываются на анализе её прохождения по диску звезды и звёздного света сквозь её атмосферу. В настоящее время нет никаких доказательств того, что Проксима Центавра b проходит по диску родительской звезды, а возможности увидеть это событие в настоящее время ничтожно слабые. Однако учёные надеются, что в будущем эффективность наблюдательных приборов возрастёт.

На вопрос о том, как называется ближайшая к Земле звезда, многие не смогут ответить правильно. Правильный ответ на самом деле очень прост. Самая близкая к нам звезда называется Солнце.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Солнце — самая близкая звезда к Земле

Яркий шар, который поднимается над горизонтом каждый день — это ближайшая к нам звезда. Она образовалась примерно 4,5 млрд. лет назад. Солнце относится к группе молодых звезд. Ученые считают, что появлением светила, мы обязаны взрыву сверхновой. Это подтверждают данные об аномальном количестве золота в веществе Солнечной системы. Светило состоит из раскаленных газов и примесей сравнительно небольшого количества иных элементов.

Его химический состав:

  • водород (70 %);
  • гелий (28 %);
  • железо;
  • никель;
  • кислород;
  • азот;
  • кремний;
  • магний.

Солнце производит колоссальное количество энергии путем термоядерного синтеза. Сейчас это реакции, связанные с превращением водорода в гелий. Температура поверхности составляет 5780 кельвин (примерно 5500 ̊С). По принятой классификации это не самая большая звезда во вселенной, расположенная в одном из рукавов галактики Млечный путь. Благодаря гигантской силе гравитации Солнце стало центром, вокруг которого вращаются планеты Солнечной системы, а также астероиды, метеориты, космическая пыль, другие космические тела.

Интересные факты:

  • светило составляет 99,8% массы нашей планетарной системы;
  • здесь каждую секунду 4 млрд. тон вещества превращается в энергию;
  • внутри могло бы поместиться 1300 планет, подобных нашей;
  • его диаметр равняется 109 диаметрам Земли;
  • его масса сопоставима с 332940 массами голубой планеты;
  • Солнце движется вокруг центра галактики со скоростью примерно 217 км/с;
  • оно ярче, чем 85% звезд галактики Млечный путь;
  • свет Солнца на самом деле почти белый: желтый оттенок он приобретает, проходя через атмосферу Земли;
  • фотоны света с поверхности светила достигают планеты Земля за 8 минут;
  • магнитное поле Солнца очень сильное и способно менять свое направление каждые 11 лет;
  • солнечный ветер, пятна на Солнце, вспышки и гигантские протуберанцы возникают под действием магнитного поля;
  • подмечено, что циклы солнечной активности длятся 11 лет;
  • геомагнитных бурь и на планете просто не было бы без магнитного поля наиболее близкой звезды, ведь они возникают в результате взаимодействия силовых потоков.

Самая близкая звезда поддерживает жизнь на голубой планете. Она является источником света, необходимого для процесса фотосинтеза. Это обеспечивает создание органики из неорганических веществ, а также синтез кислорода. Без него не смогла бы зародиться жизнь. Благодаря фотосинтезу древними растениями была получена энергия, которая содержится в угле, нефти, других углеродсодержащих полезных ископаемых. Высокие дозы ультрафиолетового излучения Солнца опасны для всего живого, его сдерживает озоновый слой атмосферы. Но при этом ультрафиолет имеет антисептические свойства и необходим для выработки витамина D телом человека. Вспышки на Солнце и сильные колебания его магнитного поля способны вызвать перебои в работе электрических приборов, влиять на самочувствие людей.

Солнце — центр нашей планетной системы, поэтому будущее человечества напрямую связано с будущим звезды, какая расположена ближе всего к нашей планете. Сейчас светило находится примерно на середине своего жизненного цикла. Ученые установили, что подобные звезды существуют на главной последовательности 10-12 млн. лет. Какое будущее ожидает наше светило?

Ученые подсчитали:

  • через 1,1 млрд. лет Солнце повысит свою яркость на 11%, что угрожает прекращением жизни на поверхности Земли;
  • спустя 3,5 млрд. лет Солнце станет ярче на 40%; это сделает Землю подобной Венере в наше время;
  • через 6,4 млрд. лет водород в ядре кончится, оно станет сжиматься и уплотнятся;
  • пройдет еще 7,7 млрд. лет и Солнце неизбежно станет красным гигантом, радиус которого будет в 206 раз больше современного; если он не поглотит Землю, с нее при этом точно исчезнет вода и атмосфера;
  • масса Солнца не позволит ему превратиться в сверхновую, поэтому потом последует фаза планетарной туманности и белого карлика; тогда Солнце будет размерами напоминать Землю;
  • примерно через 20 миллионов лет белый карлик угаснет.

Теперь вопрос том, какая самая близкая к голубой планете звезда не застанет вас врасплох. А как называется самая близкаязвезда, кроме Солнца? Это уже более сложный вопрос.

Расстояние от Земли до ближайшей звезды

Ученые давно вычислили, сколько км отделяет Землю от Солнца. Расстояние от Земли до ближайшей звезды составляет примерно 150 миллионов километров. Поскольку орбита Земли эллипсовидная, точное значение может меняться. Минимальное расстояние до Солнца астрономы называют перигелием (148 млн. км), а максимальное — афелием (152 млн. км). Афелий приходится на июль, а перигелий — на январь.

Ближайшая звезда к Земле, кроме Солнца: не все так просто

После Солнца ближе всего к голубой планете расположена очень необычная звезда под названием Альфа Центавра. Расстояние до нее составляет 4,37 световых лет. Альфа Центавра — не одиночный объект.

Она состоит из трех объектов:

  • Альфа Центавра А;
  • Альфа Центавра В;
  • Проксима Центавра.

Они делают обороты вокруг одного совместного центра тяжести. Но больше всего нас интересует Проксима Центавра, которая делает полный оборот вокруг системы Альфа Центавра за 500 тысяч лет. Именно она ближе всего к Земле. Расстояние от нее до Земли — 4,23 световых лет. Это в 270 тысяч раз больше расстояния между Землей и Солнцем. Астрономы утверждают, что она занимает такое положение уже около 32 тысячи лет. А через 55 тысяч лет, по прогнозам ученых, это расстояние уменьшится до 3,11 световых лет. Диаметр Проксима Центавра меньше, чем диаметр Солнца в 7 раз. Масса также примерно в столько же раз меньше массы нашего светила.

Альфа Центавра расположена в созвездии Центавра, которое видно только с Южного полушария. Увидеть ее невооруженным глазом невозможно. Наверное, потому Проксиму Центавра астрономы разглядели только в 1915 году, а исследования этого интереснейшего объекта продолжаются до сегодняшнего дня. Ученые активно искали планеты вокруг этой звезды, но пока безуспешно. Также без мощного телескопа не получится рассмотреть самую близкую к Земле звезду Северного полушария. Она называется звездой Бернарда, находится на расстоянии 5,978 световых лет в созвездии Змееносца и принадлежит к группе красных карликов.

Из тех звезд, которые можно увидеть невооруженным глазом на ночном небе, ближе всех к Земле находится Сириус (8,6 световых лет). Он вдвое больше Солнца по радиусу и по массе. Второе название Сириуса — Альфа Большого пса. Нет ярче него звезд на ночном небе. По яркости на небосклоне занимает шестое место.

Ярче Сириуса светят только такие небесные тела:

1. Солнце;

3. Юпитер;

4. Венера;

Благодаря своей яркости Сириус издревле был объектом изучения и поклонения у различных народов мира с разных континентов. Он заметен почти с любой точки планеты, хотя относится к Южному полушарию звездного неба. Это двойная звезда. Сириус В — не так ярок, как Сириус А (часть системы, видимая с Земли), но при этом эти космические объекты вращаются вокруг общего центра массы. Периодичность такого вращения составляет 50 лет. Сириус В — белый карлик, а значит, раньше был намного больше Сириуса А. Возраст Сириуса ученые оценивают примерно в 230 млн. лет.

Сейчас он испускает голубовато-белый свет, хотя исследователи более древних эпох описывают его как ярко-красную звезду. Научного объяснения этому факту пока нет. Известно, что яркий вид Сириуса с Земли обусловлен тем, что звезда находится близко, а не ее собственной яркостью. Астрономы подсчитали, что в наше время Сириус приближается к нашей планете со скоростью 7,6 км/с, поэтому его видимый блеск со временем будет расти. Сириус является восьмой по приближенности к Земле звездой.

Список звезд по приближенности к Земле:

  • Солнце;
  • Альфа Центавра (Проксима Центавра);
  • Звезда Бернарда;
  • Луман 16;
  • WISE 0855-0714;
  • Вольф 395;
  • Лаланд 21185;
  • Сириус.

Возможно, скоро астрономы сделают новые открытия, и этот список пополнится новыми названиями таких далеких, но при этом близких звезд.

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

Ответ на этот вопрос не такой уж и простой

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является , вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.

Возможные пригодные для жизни миры во Вселенной

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы отправиться, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе - это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 светового года (1,3 парсека) от Земли. Альфа Центавра - это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 светового года от Земли - тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде ), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую , 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

Двигатель на ионной тяге

От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу - плюс можно использовать Юпитер или Сатурн как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства - пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 светового года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 светового года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий - это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Миссия Helios

Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 - постоянную скорость в 240 000 км/ч - ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 светового года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это , известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

EM Drive — двигатель с резонансной полостью

Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет - использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

Ракеты я ядерным двигателем

Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Ядерная силовая установка

Ядерная силовая установка - это теоретически возможный «двигатель» для быстрого космического путешествия. Концепцию первоначально предложил Станислав Улам в 1946 году, польско-американский математик, принимавший участие , а предварительные расчеты сделали Ф. Райнес и Улам в 1947 году. Проект «Орион» был запущен в 1958 году и просуществовал до 1963-го.

Под руководством Теда Тейлора из General Atomics и физика Фримена Дайсона из Института перспективных исследований в Принстоне, «Орион» должен был использовать силу импульсных ядерных взрывов, чтобы обеспечить огромную тягу с очень высоким удельным импульсом.

Орион должен был использовать силу импульсных ядерных взрывов

В двух словах, проект «Орион» включает крупный космический аппарат, который набирает скорость за счет поддержки термоядерных боеголовок, выбрасывая бомбы позади и ускоряясь за счет взрывной волны, которая уходит в расположенный сзади «пушер», панель для толчка. После каждого толчка сила взрыва поглощается этой панелью и преобразуется в движение вперед.

Хотя по современным меркам эту конструкцию сложно назвать элегантной, преимущество концепции в том, что она обеспечивает высокую удельную тягу - то есть извлекает максимальное количество энергии из источника топлива (в данном случае ядерных бомб) при минимальных затратах. Кроме того, эта концепция может теоретически разгонять очень высокие скорости, по некоторым оценкам, до 5% от скорости света (5,4 х 10 7 км/ч).

Конечно, у этого проекта имеются неизбежные минусы. С одной стороны, корабль такого размера будет крайне дорого строить. По оценкам, которые сделал Дайсон в 1968 году, космический аппарат «Орион» на водородных бомбах весил бы от 400 000 до 4 000 000 метрических тонн. И по крайней мере три четверти этого веса будут приходиться на ядерные бомбы, каждая из которых весит примерно одну тонну.

Скромные подсчеты Дайсона показали, что общая стоимость строительства «Ориона» составила бы 367 миллиардов долларов. С поправкой на инфляцию, эта сумма выливается в 2,5 триллиона долларов, это довольно много. Даже при самых скромных оценкам, аппарат будет крайне дорогим в производстве.

Есть еще небольшая проблема радиации, которую он будет излучать, не говоря уж о ядерных отходах. Считается, что именно по этой причине проект был свернут в рамках договора о частичном запрете испытаний от 1963 года, когда мировые правительства стремились ограничить ядерные испытания и остановить чрезмерный выброс радиоактивных осадков в атмосферу планеты.

Ракеты на ядерном синтезе

Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.

Проект «Дедал» так и не увидел свет

Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.

Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.

Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.

Согласитесь, выглядит очень красиво!

По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий - и большинство из них до сих пор не решены.

К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.

В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).

Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.

Термоядерный ПВРД

Известный также как ПВРД Буссарда, двигатель впервые предложил физик Роберт Буссард в 1960 году. По своей сути, это улучшение стандартной термоядерной ракеты, которая использует магнитные поля для сжатия водородного топлива до точки запуска синтеза. Но в случае ПВРД, огромная электромагнитная воронка всасывает водород из межзвездной среды и сливает в реактор как топливо.

По мере того как аппарат набирает скорость, реактивная масса попадает в ограничивающее магнитное поле, которое сжимает ее до начала термоядерного синтеза. Затем магнитное поле направляет энергию в сопло ракеты, ускоряя судно. Поскольку никакие топливные баки не будут его замедлять, термоядерный ПВРД может развить скорость порядка 4% световой и отправиться куда угодно в галактику.

Тем не менее у этой миссии есть масса возможных недостатков. К примеру, проблема трения. Космический аппарат полагается на высокую скорость сбора топлива, но вместе с тем будет сталкиваться с большим количеством межзвездного водорода и терять скорость - особенно в плотных регионах галактики. Во-вторых, дейтерия и трития (которые используются в реакторах на Земле) в космосе немного, а синтез обычного водорода, которого много в космосе, пока нам неподвластен.

Впрочем, научная фантастика полюбила эту концепцию. Самым известным примером является, пожалуй, франшиза «Звездный путь», где используются «коллекторы Буссарда». В реальности же наше понимание реакторов синтеза далеко не так прекрасно, как хотелось бы.

Лазерный парус

Солнечные паруса давно считаются эффективным способом покорения Солнечной системы. Помимо того, что они относительно просты и дешевы в изготовлении, у них большой плюс: им не нужно топливо. Вместо использования ракет, нуждающихся в топливе, парус использует давление радиации звезд, чтобы разгонять сверхтонкие зеркала до высоких скоростей.

Тем не менее, в случае межзвездного перелета, такой парус придется подталкивать сфокусированными лучами энергии (лазером или микроволнами), чтобы разгонять до скорости, близкой к световой. Концепцию впервые предложил Роберт Форвард в 1984 году, физик лаборатории Hughes Aircraft.

Чего в космосе очень много? Правильно — солнечного света

Его идея сохраняет преимущества солнечного паруса в том, что не требует топлива на борту, а также и в том, что лазерная энергия не рассеивается на расстоянии так же, как и солнечная радиация. Таким образом, хотя лазерному парусу потребуется некоторое время, чтобы разогнаться до околосветовой скорости, он впоследствии будет ограничен только скоростью самого света.

По данным исследования Роберта Фрисби в 2000 году, директора по исследованиям передовых двигательных концепций в Лаборатории реактивного движения NASA, лазерный парус разгонится до половины световой скорости меньше чем за десять лет. Он также рассчитал, что парус диаметром 320 километров мог бы добраться до Проксимы Центавра за 12 лет. Между тем, парус 965 километров в диаметре прибудет на место всего через 9 лет.

Однако строить такой парус придется из передовых композитных материалов, чтобы избежать плавления. Что будет особенно сложно, учитывая размеры паруса. Еще хуже обстоит дело с расходами. По мнению Фрисби, лазерам потребуется стабильный поток в 17 000 тераватт энергии - примерно столько весь мир потребляет за один день.

Двигатель на антиматерии

Любители научной фантастики хорошо знают, что такое антиматерия. Но если вы забыли, антиматерия - это вещество, состоящее из частиц, которые имеют такую же массу, как и обычные частицы, но противоположный заряд. Двигатель на антиматерии - это гипотетический двигатель, в основе которого лежат взаимодействия между материей и антиматерией для генерации энергии, или создания тяги.

Гипотетический двигатель на антиматерии

Короче говоря, двигатель на антиматерии использует сталкивающиеся между собой частицы водорода и антиводорода. Испущенная в процессе аннигиляции энергия сравнима по объемам с энергией взрыва термоядерной бомбы в сопровождении потока субатомных частиц - пионов и мюонов. Эти частицы, которые движутся со скоростью одной третьей от скорости света, перенаправляются в магнитное сопло и вырабатывают тягу.

Преимущество такого класса ракет в том, что большую часть массы смеси материи/антиматерии можно преобразовать в энергию, что обеспечивает высокую плотность энергии и удельный импульс, превосходящий любую другую ракету. Более того, реакция аннигиляции может разогнать ракету до половины скорости света.

Такой класс ракет будет самым быстрым и самым энергоэффективным из возможных (или невозможных, но предлагаемых). Если обычные химические ракеты требуют тонны топлива, чтобы продвигать космический корабль к месту назначения, двигатель на антиматерии будет делать ту же работу за счет нескольких миллиграмов топлива. Взаимное уничтожение полукилограмма частиц водорода и антиводорода высвобождает больше энергии, чем 10-мегатонная водородная бомба.

Именно по этой причине Институт перспективных концепций NASA исследует эту технологию как возможную для будущих миссий на Марс. К сожалению, если рассматривать миссии к ближайшим звездным системам, сумма необходимого топлива растет в геометрической прогрессии, и расходы становятся астрономическими (и это не каламбур).

Как выглядит аннигиляция?

Согласно отчету, подготовленному к 39-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference и Exhibit, двухступенчатая ракета на антивеществе потребует больше 815 000 метрических тонн топлива, чтобы добраться до Проксимы Центавра за 40 лет. Это относительно быстро. Но цена…

Хотя один грамм антивещества производит невероятное количество энергии, производство одного только грамма потребует 25 миллионов миллиардов киловатт-часов энергии и выльется в триллион долларов. В настоящее время общее количество антивещества, которое было создано людьми, составляет меньше 20 нанограммов.

И даже если бы мы могли задешево производить антиматерию, нам потребовался бы массивный корабль, который смог бы удерживать необходимое количество топлива. Согласно докладу доктора Даррела Смита и Джонатана Вебби из Авиационного университета Эмбри-Риддл в штате Аризона, межзвездный корабль с двигателем на антивеществе мог бы набрать скорость в 0,5 световой и достичь Проксимы Центавра чуть больше чем за 8 лет. Тем не менее сам корабль весил бы 400 тонн и потребовал бы 170 тонн топлива из антивещества.

Возможный способ обойти это - создать судно, которое будет создавать антивещество с последующим его использованием в качестве топлива. Эта концепция, известная как Vacuum to Antimatter Rocket Interstellar Explorer System (VARIES), была предложена Ричардом Обаузи из Icarus Interstellar. Опираясь на идею переработки на месте, корабль VARIES должен использовать крупные лазеры (запитанные огромными солнечными батареями), создающие частицы антивещества при выстреле в пустой космос.

Подобно концепции с термоядерным ПВРД, это предложение решает проблему перевозки топлива за счет его добычи прямо из космоса. Но опять же, стоимость такого корабля будет чрезвычайно высокой, если строить его нашими современными методами. Мы просто не в силах создавать антивещество в огромных масштабах. А еще нужно решить проблему с радиацией, поскольку аннигиляция материи и антиматерии производит вспышки высокоэнергетических гамма-лучей.

Они не только представляют опасность для экипажа, но и для двигателя, чтобы те не развалились на субатомные частицы под воздействием всей этой радиации. Короче говоря, двигатель на антивеществе совершенно непрактичен с учетом наших современных технологий.

Варп-двигатель Алькубьерре

Любители научной фантастики, без сомнения, знакомы с концепцией варп-двигателя (или двигателя Алькубьерре). Предложенная мексиканским физиком Мигелем Алькубьерре в 1994 году, эта идея была попыткой вообразить мгновенное перемещение в пространстве без нарушения специальной теории относительности Эйнштейна. Если коротко, эта концепция включает растяжение ткани пространства-времени в волну, которая теоретически приведет к тому, что пространство перед объектом будет сжиматься, а позади - расширяться.

Объект внутри этой волны (наш корабль) сможет ехать на этой волне, будучи в «варп-пузыре», со скоростью намного превышающей релятивистскую. Поскольку корабль не движется в самом пузыре, а переносится им, законы относительности и пространства-времени нарушаться не будут. По сути, этот метод не включает движение быстрее скорости света в локальном смысле.

«Быстрее света» он только в том смысле, что корабль может достичь пункта назначения быстрее луча света, путешествующий за пределами варп-пузыря. Если предположить, что космический аппарат будет оснащен системой Алькубьерре, он доберется до Проксимы Центавра меньше чем за 4 года. Поэтому, если говорить о теоретическом межзвездном космическом путешествии, это, безусловно, наиболее перспективная технология в плане скорости.

Разумеется, вся эта концепция чрезвычайно спорная. Среди аргументов против, например, то, что она не принимает во внимание квантовую механику и может быть опровергнута (вроде петлевой квантовой гравитации). Расчеты необходимого объема энергии также показали, что варп-двигатель будет непомерно прожорлив. Другие неопределенности включают безопасность такой системы, эффекты пространства-времени в пункте назначения и нарушения причинности.

Тем не менее в 2012 году ученый NASA Гарольд Уайт заявил, что вместе с коллегами двигателя Алькубьерре. Уайт заявил, что они построили интерферометр, который будет улавливать пространственные искажения, произведенные расширением и сжатием пространства-времени метрики Алькубьерре.

В 2013 году Лаборатория реактивного движения опубликовала результаты испытаний варп-поля, которые проводились в условиях вакуума. К сожалению, результаты сочли «неубедительными». В долгосрочной перспективе мы можем выяснить, что метрика Алькубьерре нарушает один или несколько фундаментальных законов природы. И даже если его физика окажется верной, нет никаких гарантий, что систему Алькубьерре можно использовать для полетов.

В общем, все как обычно: вы родились слишком рано для путешествия к ближайшей звезде. Тем не менее, если человечество почувствует необходимость построить «межзвездный ковчег», который будет вмещать самоподдерживающееся человеческое общество, добраться до Проксимы Центавра удастся лет за сто. Если мы, конечно, захотим инвестировать в такое мероприятие.

Что касается времени, все доступные методы кажутся крайне ограниченными. И если потратить сотни тысяч лет на путешествие к ближайшей звезде может нас мало интересовать, когда наше собственное выживание стоит на кону, по мере развития космических технологий, методы будут оставаться чрезвычайно непрактичным. К моменту, когда наш ковчег доберется до ближайшей звезды, его технологии станут устаревшими, а самого человечества может уже не существовать.

Так что если мы не осуществим крупный прорыв в сфере синтеза, антиматерии или лазерных технологий, мы будем довольствоваться изучением нашей собственной Солнечной системы.

Проксима Центавра - это звезда, которая ближе всех расположена к Земле. Название она получила от латинского слова proxima, что означает «ближайшая». Расстояние от нее до Солнца равно 4,22 световым годам. Однако, несмотря на то что звезда ближе к нам, чем Солнце, увидеть ее можно только в телескоп. Она настолько маленькая, что о ее существовании ничего не было известно до 1915 года. Первооткрывателем звезды стал Роберт Иннес, астроном из Шотландии.

Альфа Центавра

Проксима является частью системы Кроме нее, в нее также входят еще две звезды: Альфа Центавра А и Альфа Центавра В. Они намного ярче и заметнее Проксимы. Так, звезда А, ярчайшая в этом созвездии, находится на расстоянии 4,33 световых лет от Солнца. Она носит название Ригель Центавра, что переводится как «Нога Кентавра». Эта звезда чем-то напоминает наше Солнце. Наверное, из-за своей яркости. В отличие от Проксимы Центавры, она была известна еще с древнейших времен, так как очень заметна на ночном небе.

Альфа Центавра В также не уступает «сестре» по яркости. Вместе они - тесная двойная система. Проксима Центавра находится достаточно далеко от них. Между звездами - расстояние в тринадцать тысяч астрономических единиц (это дальше, чем от Солнца до планеты Нептун в целых четыреста раз!).

Все звезды системы Центавра вращаются по орбите вокруг их общего центра масс. Только Проксима двигается очень медленно: период ее обращения занимает миллионы лет. Поэтому эта звезда еще очень долго будет оставаться самой близкой к Земле.

Совсем маленькая

Звезда Проксима Центавра не только ближе всех из созвездия к нам, но и является самой маленькой. Ее масса такая мизерная, что ее едва хватает на то, чтобы поддерживать процессы образования гелия из водорода, необходимые для существования. Звезда совсем тускло светится. Проксима намного легче Солнца, где-то в семь раз. И температура на ее поверхности значительно ниже: «всего» три тысячи градусов. По яркости Проксима уступает Солнцу в сто пятьдесят раз.

Красные карлики

Маленькая звездочка Проксима относится к спектральному классу M с очень низкой светимостью. Широко известно другое название небесных тел этого класса - красные карлики. Звезды с такой маленькой массой - интереснейшие объекты. Их внутреннее устройство чем-то схоже со строением гигантских планет, таких как Юпитер. Вещество красных карликов находится в экзотичном состоянии. Кроме того, существуют предположения, что планеты, которые расположены вблизи таких звезд, могут быть пригодными для жизни.

Красные карлики живут очень долго, намного дольше любых других звезд. Они очень медленно эволюционируют. Какие-либо ядерные реакции внутри них начинают проистекать только через несколько миллиардов лет после зарождения. Время жизни красного карлика больше, чем время существования целой Вселенной! Так, в далеком-далеком будущем, когда погаснет не одна звезда типа Солнца, красный карлик Проксима Центавра будет все также тускло светить во мраке космоса.

Вообще, красные карлики - это самые частые звезды в нашей галактике. Более 80% всех звездных тел составляют именно они. И вот парадокс: их совсем невидно! Невооруженным глазом не заметишь ни одного из них.

Измерение

До сих пор возможности точно измерить размеры таких маленьких звезд, как красные карлики, из-за их слабой светимости просто не представлялось возможным. Но сегодня данная проблема решена с помощью специального VLT-интерферометра (VLT - сокращение от английского Very Large Telescope). Это аппарат, работающий на базе двух больших 8,2-метровых VLT-телескопов, расположенных в астрономической обсерватории Паранал (ESO). Эти два огромных телескопа, удаленные друг от друга на 102,4 метра, позволяют измерить с такой точностью, какая просто не под силу другим аппаратам. Так астрономы Женевской обсерватории впервые получили точные размеры такой маленькой звезды.

Переменчивая Центавра

По своим размерам Проксима Центавра граничит между реальной звездой, планетой и И все-таки это звезда. Масса и диаметр ее составляют одну седьмую массы, а также соответственно. Звезда массивнее, чем планета Юпитер, в сто пятьдесят раз, однако весит в полтора раза меньше. Если бы Проксима Центавра весила еще меньше, то она бы просто не смогла стать звездой: не хватило бы водорода в ее недрах, чтобы излучать свет. В таком случае это был бы обычный коричневый карлик (т. е. мертвый), а не настоящая звезда.

Сама по себе Проксима - очень тусклое небесное тело. В обычном состоянии ее светимость достигает не более 11m. Яркой она выгладит только на снимках, сделанных огромными телескопами, такими как, например, «Хаббл». Однако иногда блеск звезды резко и значительно усиливается. Ученые объясняют этот факт тем, что Проксима Центавра относится к классу так называемых переменчивых, или вспыхивающих, звезд. Это вызвано сильными вспышками на ее поверхности, которые являются результатами бурных процессов конвекции. Они чем-то схожи с теми, что происходят на поверхности Солнца, только намного сильнее, что приводит даже к изменению яркости звезды.

Еще совсем ребенок

Эти бурные процессы и вспышки говорят о том, что ядерные реакции, происходящие в недрах Проксимы Центавры, еще не стабилизировались. Выводы ученых: это еще совсем молодая звезда по меркам космоса. Хотя ее возраст вполне сопоставим с возрастом нашего Солнца. Но Проксима - красный карлик, поэтому их даже нельзя сравнивать. Ведь, как и другие "красные собратья", она будет очень медленно и экономно сжигать свое ядерное горючее, а потому и светить очень-очень долго - приблизительно в триста раз дольше, чем вся наша Вселенная! Что уж там говорить о Солнце…

Многие писатели-фантасты считают, что Проксима Центавра - наиболее подходящая для космических исследований и приключений звезда. Некоторые верят, что в ее Вселенной скрываются планеты, на которых можно встретить другие цивилизации. Может, оно и так, да вот только расстояние от Земли до Проксимы Центавры - более четырех световых лет. Так что, хоть она и ближайшая, а все-таки находится далековато.