Этапы становления и развития биоорганической химии. Биоорганическая химия у студентов-медиков

, антибиотики , феромоны , сигнальные вещества , биологически активные вещества растительного происхождения, а также синтетические регуляторы биологических процессов (лекарственные препараты , пестициды и др.). Как самостоятельная наука сформировалась во второй половине XX века на стыке биохимии и органической химии и связана с практическими задачами медицины , сельского хозяйства , химической , пищевой и микробиологической промышленности.

Методы

Основной арсенал составляют методы органической химии, для решения структурно-функциональных задач привлекаются разнообразные физические, физико-химические , математические и биологические методы.

Объекты изучения

  • Биополимеры смешанного типа
  • Природные сигнальные вещества
  • Биологически активные вещества растительного происхождения
  • Синтетические регуляторы (лекарственные препараты , пестициды и т. п.).

Источники

  • Овчинников Ю. А. . - М .: Просвещение, 1987. - 815 с.
  • Бендер М., Бергерон Р., Комияма М.
  • Дюга Г., Пенни К. Биоорганическая химия. - М.: Мир, 1983.
  • Тюкавкина Н. А., Бауков Ю. И.

См. также

Напишите отзыв о статье "Биоорганическая химия"

Отрывок, характеризующий Биоорганическая химия

– Ma chere, il y a un temps pour tout, [Милая, на все есть время,] – сказала графиня, притворяясь строгою. – Ты ее все балуешь, Elie, – прибавила она мужу.
– Bonjour, ma chere, je vous felicite, [Здравствуйте, моя милая, поздравляю вас,] – сказала гостья. – Quelle delicuse enfant! [Какое прелестное дитя!] – прибавила она, обращаясь к матери.
Черноглазая, с большим ртом, некрасивая, но живая девочка, с своими детскими открытыми плечиками, которые, сжимаясь, двигались в своем корсаже от быстрого бега, с своими сбившимися назад черными кудрями, тоненькими оголенными руками и маленькими ножками в кружевных панталончиках и открытых башмачках, была в том милом возрасте, когда девочка уже не ребенок, а ребенок еще не девушка. Вывернувшись от отца, она подбежала к матери и, не обращая никакого внимания на ее строгое замечание, спрятала свое раскрасневшееся лицо в кружевах материной мантильи и засмеялась. Она смеялась чему то, толкуя отрывисто про куклу, которую вынула из под юбочки.
– Видите?… Кукла… Мими… Видите.
И Наташа не могла больше говорить (ей всё смешно казалось). Она упала на мать и расхохоталась так громко и звонко, что все, даже чопорная гостья, против воли засмеялись.
– Ну, поди, поди с своим уродом! – сказала мать, притворно сердито отталкивая дочь. – Это моя меньшая, – обратилась она к гостье.
Наташа, оторвав на минуту лицо от кружевной косынки матери, взглянула на нее снизу сквозь слезы смеха и опять спрятала лицо.
Гостья, принужденная любоваться семейною сценой, сочла нужным принять в ней какое нибудь участие.
– Скажите, моя милая, – сказала она, обращаясь к Наташе, – как же вам приходится эта Мими? Дочь, верно?
Наташе не понравился тон снисхождения до детского разговора, с которым гостья обратилась к ней. Она ничего не ответила и серьезно посмотрела на гостью.
Между тем всё это молодое поколение: Борис – офицер, сын княгини Анны Михайловны, Николай – студент, старший сын графа, Соня – пятнадцатилетняя племянница графа, и маленький Петруша – меньшой сын, все разместились в гостиной и, видимо, старались удержать в границах приличия оживление и веселость, которыми еще дышала каждая их черта. Видно было, что там, в задних комнатах, откуда они все так стремительно прибежали, у них были разговоры веселее, чем здесь о городских сплетнях, погоде и comtesse Apraksine. [о графине Апраксиной.] Изредка они взглядывали друг на друга и едва удерживались от смеха.

Биоорганическая химия. Тюкавкина Н.А., Бауков Ю.И.

3-е изд., перераб. и доп. - М.: 2004 - 544 с.

Основная особенность учебника - сочетание медицинской направленности этого химического курса, необходимого для студентов-медиков, с его высоким, фундаментальным научным уровнем. В учебник включен базисный материал по строению и реакционной способности органических соединений, в том числе биополимеров, являющихся структурными компонентами клетки, а также основных метаболитов и низкомолекулярных биорегуляторов. В третьем издании (2-е - 1991 г.) особое внимание уделено соединениям и реакциям, имеющим аналогии в живом организме, усилен акцент на освещение биологической роли важных классов соединений, расширен спектр современных сведений экологического и токсикологического характера. Для студентов вузов, обучающихся по специальностям 040100 Лечебное дело, 040200 Педиатрия, 040300 Медико-профилактическое дело, 040400 Стоматология.

Формат: pdf

Размер: 15 Мб

Смотреть, скачать: drive.google

СОДЕРЖАНИЕ
Предисловие...................... 7
Введение......................... 9
Часть I
ОСНОВЫ СТРОЕНИЯ И РЕАКЦИОННОЙ СПОСОБНОСТИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Глава 1. Общая характеристика органических соединений 16
1.1. Классификация. "................ 16
1.2. .Номенклатура... ............ 20
1.2.1. Заместительная номенклатура........... 23
1.2.2. Радикально-функциональная номенклатура........ 28
Глава 2. Химическая связь и взаимное влияние атомов в органических
соединениях.................. 29
2.1. Электронное строение элементов-органогенов...... 29
2.1.1. Атомные орбитали................ 29
2.1.2. Гибридизация орбиталей............. 30
2.2. Ковалентные связи............... 33
2.2.1. а- и л-Связи.................. 34
2.2.2. Донорно-акцепторные связи............ 38
2.2.3. Водородные связи............... 39
2.3. Сопряжение и ароматичность............ 40
2.3.1. Системы с открытой цепью сопряжения... ,..... 41
2.3.2. Системы с замкнутой цепью сопряжения........ 45
2.3.3. Электронные эффекты.............. 49
Глава 3. Основы строения органических соединений....... 51
3.1. Химическое строение и структурная изомерия...... 52
3.2. Пространственное строение и стереоизомерия...... 54
3.2.1. Конфигурация................. 55
3.2.2. Конформация................. 57
3.2.3. Элементы симметрии молекул............ 68
3.2.4. Эиантиомерия............... 72
3.2.5. Диастереомерия................
3.2.6. Рацематы.................. 80
3.3. Энантиотопия, диастереотопия. . ......... 82
Глава 4 Общая характеристика реакций органических соединений 88
4.1. Понятие о механизме реакции..... 88
3
11.2. Первичная структура пептидов и белков........ 344
11.2.1. Состав и аминокислотная последовательность...... 345
11.2.2. Строение и синтез пептидов............ 351
11.3. Пространственное строение полипептидов и белков.... 361
Глава 12. Углеводы.................... 377
12.1. Моносахариды................. 378
12.1.1. Строение и стереоизомерия............. 378
12.1.2. Таутомерия..............." . 388
12.1.3. Конформации................. 389
12.1.4. Производные моносахаридов............ 391
12.1.5. Химические свойства............... 395
12.2. Дисахариды.................. 407
12.3. Полисахариды................. 413
12.3.1. Гомополисахариды............... 414
12.3.2. Гетерополисахариды............... 420
Глава 13. Нуклеотиды и нуклеиновые кислоты..........431
13.1. Нуклеозиды и нуклеотиды............. 431
13.2. Структура нуклеиновых кислот........... 441
13.3 Нуклеозидполифосфаты. Никотинамнднуклеотиды..... 448
Глава 14. Липиды и низкомолекулярные биорегуляторы...... 457
14.1. Омыляемые липиды............... 458
14.1.1. Высшие жирные кислоты - структурные компоненты омыля-емых липидов 458
14.1.2. Простые липиды................ 461
14.1.3. Сложные липиды................ 462
14.1.4. Некоторые свойства омыляемых липидов и их структурных компонентов 467
14.2. Неомыляемые липиды 472
14.2.1. Терпены.......... ...... 473
14.2.2. Низкомолекулярные биорегуляторы липидной природы. . . 477
14.2.3. Стероиды................... 483
14.2.4. Биосинтез терпенов и стероидов........... 492
Глава 15. Методы исследования органических соединений...... 495
15.1. Хроматография................. 496
15.2. Анализ органических соединений. . ........ 500
15.3. Спектральные методы............... 501
15.3.1. Электронная спектроскопия............. 501
15.3.2. Инфракрасная спектроскопия............ 504
15.3.3. Спектроскопия ядерного магнитного резонанса...... 506
15.3.4. Электронный парамагнитный резонанс......... 509
15.3.5. Масс-спектрометрия............... 510

Предисловие
На протяжении многовековой истории развития естествознания установилась тесная взаимосвязь между- медициной и химией. Происходящее в настоящее время глубокое взаимопроникновение этих наук приводит к появлению новых научных направлений, изучающих молекулярную природу отдельных физиологических процессов, молекулярные основы патогенеза болезней, молекулярные аспекты фармакологии и т. п. Необходимость познания процессов жизнедеятельности на молекулярном уровне объяснима, «ибо живая клетка - настоящее царство больших и малых молекул, непрерывно взаимодействующих, возникающих и исчезающих»*.
Биоорганическая химия изучает биологически значимые вещества и может служить «молекулярным инструментом» при разностороннем исследовании компонентов клетки.
Биоорганическая химия играет важную роль в развитии современных областей медицины и является неотъемлемой частью естественнонаучного образования врача.
Прогресс медицинской науки и улучшение здравоохранения связаны с глубокой фундаментальной подготовкой специалистов. Актуальность такого подхода во многом определяется превращением медицины в крупную отрасль социальной сферы, в поле зрения которой находятся проблемы экологии, токсикологии, биотехнологии и т. д.
Ввиду отсутствия в учебных планах медицинских вузов общего курса органической химии в настоящем учебнике отводится определенное место основам органической химии, необходимым для усвоения биоорганической химии. При подготовке третьего издания (2-е - 1992 г.) материал учебника переработан и еще более приближен к задачам восприятия медицинских знаний. Расширен круг соединений и реакций, имеющих аналогии в живых организмах. Большее внимание уделено сведениям экологического и токсикологического характера. Некоторому сокращению подверглись элементы сугубо химического характера, не имеющие принципиального значения для медицинского образования, в частности, способы получения органических соединений, свойства ряда отдельных представителей и т. п. Вместе с тем расширены разделы, включающие материал о взаимосвязи между структурой органических веществ и их биологическим действием как молекулярной основы действия лекарственных средств. Улучшена структура учебника, в отдельные рубрики вынесен химический материал, имеющий специальное медико-биологическое значение.
Авторы выражают искреннюю благодарность профессорам С. Э. Зурабяну, И. Ю. Белавину, И. А. Селивановой, а также всем коллегам за полезные советы и помощь в подготовке рукописи к переизданию.

Столько было всяких удивительных происшествий,

Что ничто не казалось ей теперь совсем не возможным

Л. Кэрролл «Алиса в стране чудес»

Биоорганическая химия развивалась на границе между двумя науками: химией и биологией. В настоящее время к ним присоединились медицина и фармакология. Все эти четыре науки используют современные методы физических исследований, математического анализа и компьютерного моделирования.

В 1807 году Й.Я . Берцелиус предложил, что вещества, подобные оливковому маслу или сахару, которые распространены в живой природе, следует называть органическими.

К этому времени уже были известны многие природные соединения, которые впоследствии стали определять как углеводы, белки, липиды, алкалоиды.

В 1812 г. российский химик К.С.Кирхгоф превратил крахмал, нагревая его с кислотой, в сахар, названный позднее глюкозой.

В 1820 г. французский химик А. Браконно , обрабатывая белок желатину, получил вещество глицин, относящееся к классу соединений, которые позднее Берцелиус назвал аминокислотами .

Датой рождения органической химии можно считать опубликованную в 1828 году работу Ф.Велера , который впервые синтезировал вещество природного происхождения мочевину- из неорганического соединения цианата аммония.

В 1825 году физик Фарадей выделил бензол из газа, который использовали для освещения города Лондона. Присутствием бензола можно объяснить коптящее пламя лондонских фонарей..

В 1842 г. Н.Н. Зинин осуществил синтез анилина ,

В 1845 г. А.В. Кольбе, ученик Ф. Велера, синтезировал уксусную кислоту- несомненно природное органическое соединение - из исходных элементов(углерода, водорода, кислорода)

В 1854 г. П. М. Бертло нагревал глицерин со стеариновой кислотой и получил тристеарин, который оказался идентичным(одинаковым) с природным соединением, выделенным из жиров. Далее П.М. Бертло взял другие кислоты, которые не были выделены из природных жиров и получил соединения, очень похожие на природные жиры. Этим французский химик доказал, что можно получать не только аналоги природных соединений, но и создавать новые, похожие и одновременно отличающиеся от природных.

Многие крупные достижения органической химии второй половины Х1Х связаны с синтезом и изучением природных веществ.

В 1861 г. немецкий химик Фридрих Август Кекуле фон Страдонитц(называемый всегда в научной литературе просто Кекуле) опубликовал учебник, в котором определил органическую химию как химию углерода.


В период 1861- 1864 гг. российский химик А.М. Бутлеров создал единую теорию строения органических соединений, которая позволила перевести все имеющиеся достижения на единую научную основу и открыла путь к развитию науки органической химии.

В этот же период Д.И Менделеев. известный всему миру как ученый, который открыл и сформулировал периодический закон изменения свойств элементов, опубликовал учебник « Органическая химия». В нашем распоряжении есть его 2-е издание.(исправленное и дополненное, Издание Товарищества «Общественная польза», Санкт-Петербург, 1863г. 535 с)

В своей книге великий ученый четко определил связь органических соединений и процессов жизнедеятельности: « Многие из тех процессов и веществ, которые производятся организмами, мы можем воспроизвести искусственно, вне организма. Так, белковые вещества, разрушаясь в животных под влиянием кислорода, .поглощенного кровью, превращаются в аммиачные соли, мочевину, слизевый сахар, бензойную кислоту и др. вещества, обычно выделяющиеся мочой…Отдельно взятое каждое жизненное явление не есть следствие какой-то особой силы, но совершается по общим законам природы ». В те времена биоорганическая химия и биохимия еще не сформировались как

самостоятельные направления, вначале их объединяла физиологическая химия , но постепенно они выросли на основе всех достижений в две самостоятельные науки.

Наука биоорганическая химия изучает связь между строением органических веществ и их биологическими функциями, используя, в основном, методы органической, аналитический, физической химии, а также математики и физики

Главной отличительной чертой этого предмета является исследование биологической активности веществ в связи с анализом их химической структуры

Объекты изучения биоорганической химии : биологически важные природные биополимеры – белки, нуклеиновые кислоты, липиды, низкомолекулярные вещества – витамины, гормоны, сигнальные молекулы, метаболиты – вещества участвующие в энергетическом и пластическом обмене веществ, синтетические лекарственные препараты.

К основным задачам биоорганической химии относятся:

1. Разработка методов выделения, очистки природных соединений, использование методов медицины для оценки качества препарата (например, гормона по степени его активности);

2. Определение строения природного соединения. Используются все методы химии: определение молекулярной массы, гидролиз, анализ функциональных групп, оптические методы исследования;

3. Разработка методов синтеза природных соединений;

4. Изучение зависимости биологического действия от строения;

5.Выяснение природы биологической активности, молекулярных механизмов взаимодействия с различными структурами клетки или с ее компонентами.

Развитие биоорганической химии на протяжении десятилетий связано с именами российских ученых: Д.И.Менделеева, А.М. Бутлерова, Н.Н.Зинина, Н.Д.Зелинского А.Н.Белозерского Н.А.Преображенского М.М.Шемякина, Ю.А. Овчинникова.

Основоположниками биоорганической химии за рубежом являются ученые, совершившие многие крупнейшие открытия: строение вторичной структуры белка (Л. Полинг), полный синтез хлорофилла, витамина В 12 (Р. Вудворд), использование ферментов в синтезе сложных органических веществ. в том числе, гена (Г. Корана) и другие

На Урале в г. Екатеринбурге в области биоорганической химии с 1928 по 1980 гг. работал заведующий кафедрой органической химии УПИ академик И.Я.Постовский, известный как один из создателей в нашей стране научного направления поиска и синтеза лекарственных препаратов и автор ряда препаратов(сульфаниламидов, противоопухолевых, противолучевых, противотуберкулезных).. Его исследования продолжают ученики, которые работают под руководством академиков О.Н.Чупахина, В.Н. Чарушина в УГТУ-УПИ и в Институте органического синтеза им. И.Я. Постовского Российской Академии Наук.

Биоорганическая химия тесно связана с задачами медицины, необходима для изучения, понимания биохимии, фармакологии, патофизиологии, гигиены. Весь научный язык биоорганической химии, принятые обозначения и используемые методы не отличаются от органической химии, которую вы изучали в школе

Химия - наука о строении, свойствах веществ, их превращениях и сопровождающих явлениях.

Задачи:

1. Исследование строения вещества, развитие теории строения и свойств молекул и материалов. Важно установление связи между строением и разнообразными свойствами веществ и на этой основе построение теорий реакци­онной способности вещества, кинетики и механизма химических реакций и ката­литических явлений.

2. Осуществление направленного синтеза новых веществ с заданными свойствами. Здесь также важно найти новые реакции и катализаторы для более эффективного осуществления синтеза уже известных и имеющих промышленное значение соединений.

3. Традиционная задача химии приобрела особое значе­ние. Оно связано как с увеличением числа химических объектов и изучаемых свойств, так и с необходимостью определения и уменьшения последствий воз­действия человека на природу.

Химия является общетеоретической дисциплиной. Она призвана дать студентам современное научное представление о веществе как одном из видов движущейся материи, о путях, механизмах и способах превращения одних веществ в другие. Знание основных химических за­конов, владение техникой химических расчетов, понимание возможностей, пре­доставляемых химией с помощью других специалистов, работающих в отдель­ных и узких ее областях, значительно ускоряют получение нужного результата в различных сферах инженерной и научной деятельности.

Химическая отрасль - одна из важнейших отраслей промышленности в нашей стране. Производимые ею химические соединения, различные композиции и материалы применяются повсюду: в машиностроении, металлургии, сельском хозяйстве, строительстве, электротехнической и элек­тронной промышленности, связи, транспорте, космической технике, медицине, быту, и др. Главными направлениями развития современной химической промышленности являются: производство новых соединений и материалов и повышение эффек­тивности существующих производств.

В медицинском вузе студенты изучают общую, биоорганическую, биологическую химию, а также клиническую биохимию. Знания студентами комплекса химических наук в их преемственности и взаимосвязи дают большую возможность, больший простор в исследовании и практическом использовании различных явлений, свойств и закономерностей, способствует развитию личности.

Специфическими особенностями изучения химических дисциплин в медицинском вузе являются:

· взаимозависимость между целями химического и медицинского образования;

· универсальность и фундаментальность данных курсов;

· особенность построения их содержания в зависимости от характера и общих целей подготовки врача и его специализации;

· единство изучения химических объектов на микро- и макроуровнях с раскрытием разных форм их химической организации как единой системы и проявляемых ею разных функций (химических, биологических, биохимических, физиологических и др.) в зависимости от их природы, среды и условий;

· зависимость от связи химических знаний и умений с реальной действительностью и практикой, в том числе медицинской, в системе «общество - природа - производство - человек», обусловленных неограниченными возможностями химии в создании синтетических материалов и их значением в медицине, развитием нанохимии, а также в решении экологических и многих других глобальных проблем человечества.

1. Взаимосвязь между процессами обмена веществ и энергии в организме

Процессы жизнедеятельности на Земле обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах - белках, жирах, углеводах и последующими превращениями этих веществ в живых организмах с выделением энергии. Особенно отчетливо понимание взаимосвязи химических превращений и энергетических процессов в организме было осознано после работы А. Лавуазье (1743-1794) и П. Лапласа (1749- 1827). Они прямыми калориметрическими измерениями показали, что энергия, выделяемая в процессе жизнедеятельности, определяется окислением продуктов питания кислородом воздуха, вдыхаемым животными.

Обмен веществ и энергии - совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.

С развитием в XIX-XX вв. термодинамики - науки о взаимопревращениях теплоты и энергий - стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление.

Обмен энергии может осуществляться передачей теплоты или совершением работы. Однако живые организмы не находятся в равновесии с окружающей средой и поэтому могут быть названы неравновесными открытыми системами. Тем не менее при наблюдении в течение определенного отрезка времени в химическом составе организма видимых изменений не происходит. Но это не значит, что химические вещества, составляющие организм, не подвергаются никаким превращениям. Напротив, они постоянно и достаточно интенсивно обновляются, о чем можно судить по скорости включения в сложные вещества организма стабильных изотопов и радионуклидов, вводимых в клетку в составе более простых веществ-предшественников.

Между обменом веществ и обменом энергии существует одно принципиальное различие . Земля не теряет и не получает сколько-нибудь заметного количества вещества. Вещество в биосфере обменивается по замкнутому циклу и т.о. используется многократно. Обмен энергией осуществляется иначе. Она не циркулирует по замкнутому циклу, а частично рассеивается во внешнее пространство. Поэтому для поддержания жизни на Земле необходим постоянный приток энергии Солнца. За 1 год в процессе фотосинтеза на земном шаре поглощается около 10 21 кал солнечной энергии. Хотя она составляет лишь 0,02% всей энергии Солнца, это неизмеримо больше, чем та энергия, которая используется всеми машинами, созданными руками человека. Столь же велико количество участвующего в кругообороте вещества.

2. Химическая термодинамика как теоретическая основа биоэнергетики. Предмет и методы химической термодинамики

Химическая термодинамика изучает переходы химической энергии в другие формы - тепловую, электрическую и т. п., уста­навливает количественные законы этих переходов, а также направление и пределы самопроизвольного протекания химиче­ских реакций при заданных условиях.

Термодинамический метод основан на ряде строгих понятий: «система», «состояние системы», «внутренняя энергия системы», «функция состояния системы».

Объектом изучения в термодинамике является система

Одна и та же система может находиться в различных состоя­ниях. Каждое состояние системы характеризуется определенным набором значений термодинамических параметров. К термодина­мическим параметрам относятся температура, давление, плот­ность, концентрация и т. п. Изменение хотя бы только одного термодинамического параметра приводит к изменению состояния системы в целом. Термодинамическое состояние системы назы­вают равновесным, если оно характеризуется постоянством тер­модинамических параметров во всех точках системы и не изменя­ется самопроизвольно (без затраты работы).

Химическая термоди­намика изучает систему в двух равновесных состояниях (конеч­ном и начальном) и на этом основании определяет возможность (или невозможность) самопроизвольного течения процесса при заданных условиях в указанном направлении.

Термодинамика изучает взаимные превращения различных видов энергии, связанные с переходом энергии между телами в форме теплоты и работы. Термодинамика базируется на двух основных законах, по­лучивших название первого и второго начал термодинамики. Предметом изучения в термодинамике является энергия и законы взаимных превращений форм энергии при химических ре акциях, процессах растворения, испарения, кристаллизации.

Хими́ческая термодина́мика - раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики.
Основными направлениями химической термодинамики являются:
Классическая химическая термодинамика, изучающая термодинамическое равновесие вообще.
Термохимия, изучающая тепловые эффекты, сопровождающие химические реакции.
Теория растворов, моделирующую термодинамические свойства вещества исходя из представлений о молекулярном строении и данных о межмолекулярном взаимодействии.
Химическая термодинамика тесно соприкасается с такими разделами химии, как аналитическая химия; электрохимия; коллоидная химия; адсорбция и хроматография.
Развитие химической термодинамики шло одновременно двумя путями: термохимическим и термодинамическим.
Возникновением термохимии как самостоятельной науки следует считать открытие Германом Ивановичем Гессом, профессором Петербургского университета, взаимосвязи между тепловыми эффектами химических реакций ---законы Гесса.

3. Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные. Понятие о фазе.

Система – это совокупность взаимодействующих веществ, мысленно или фактически обособленная от окружающей среды (пробирка, автоклав).

Химическая термодинамика рассматривает переходы из одного состояния в другое, при этом могут изменяться или оставаться постоянными некоторые параметры :

· изобарические – при постоянном давлении;

· изохорические – при постоянном объеме;

· изотермические – при постоянной температуре;

· изобарно - изотермические – при постоянном давлении и температуре и т.д.

Термодинамические свойства системы можно выразить с помощью нескольких функций состояния системы , называемых характеристическими функциями : внутреннейэнергииU , энтальпии H , энтропии S , энергии Гиббса G , энергии Гельмгольца F . Характеристические функции обладают одной особенностью: они не зависят от способа (пути) достижения данного состояния системы. Их значение определяется параметрами системы (давлением, температурой и др.) и зависит от количества или массы вещества, поэтому принято относить их к одному молю вещества.

По способу передачи энергии, вещества и информации между рассматриваемой системы и окружающей средой термодинамические системы классифицируются:

1. Замкнутая (изолированная) система - это система в которой нет обмена с внешними телами ни энергией, ни веществом (в том числе и излучением) , ни информацией.

2. Закрытая система - система в которой есть обмен только с энергией.

3. Адиабатно изолированная система - это система в которой есть обмен энергией только в форме теплоты.

4. Открытая система - это система, которая обменивается и энергией, и веществом, и информацией.

Классификация систем :
1) по возможности тепло- и массообмена: изолированные, закрытые, открытые. Изолированная система не обменивается с окружающей средой ни веществом, ни энергией. Закрытая система обменивается с окружающей средой энергией, но не обменивается веществом. Открытая система обменивается с окружающей средой и веществом и энергией. Понятие изолированной системы используется в физической химии как теоретическое.
2) по внутренней структуре и свойствам: гомогенные и гетерогенные. Гомогенной называется система, внутри которой нет поверхностей, делящих систему на части, различные по свойствам или химическому составу. Примерами гомогенных систем являются водные растворы кислот, оснований, солей; смеси газов; индивидуальные чистые вещества. Гетерогенные системы содержат внутри себя естественные поверхности. Примерами гетерогенных систем являются системы, состоящие из различных по агрегатному состоянию веществ: металл и кислота, газ и твёрдое вещество, две нерастворимые друг в друге жидкости.
Фаза – это гомогенная часть гетерогенной системы, имеющая одинаковый состав, физические и химические свойства, отделённая от других частей системы поверхностью, при переходе через которую свойства системы меняются скачком. Фазы бывают твёрдые, жидкие и газообразные. Гомогенная система всегда состоит из одной фазы, гетерогенная – из нескольких. По числу фаз системы классифицируются на однофазные, двухфазные, трёхфазные и т.д.

5.Первое начало термодинамики. Внутренняя энергия. Изобарный и изохорный тепловые эффекты .

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца.

Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии .

Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника. Процесс, протекающий при постоянной температуре, назы­вается изотермическим , при постоянном давлении - изобаричес­ким , при постоянном объеме – изохорическим. Если во время процесса система изолирована от внешней среды таким образом, что исключен теплообмен со средой, процесс называют адиабатическим.

Внутренняя энергия системы. При переходе системы из одного состояния в другое изменяются некоторые ее свойства, в част­ности внутренняя энергия U.

Внутренняя энергия системы представляет со­бой ее полную энергию, которая складывается из кинетической и потенциальной энергий молекул, атомов, атомных ядер и элект­ронов. Внутренняя энергия включает в себя энергию поступатель­ного, вращательного и колебательного движений, а также потен­циальную энергию, обусловленную силами притяжения и оттал­кивания, действующими между молекулами, атомами и внутри­атомными частицами. Она не включает потенциальную энергию положения системы в пространстве и кинетическую энергию дви­жения системы как целого.

Внутренняя энергия является термодинамической функ­цией состояния системы. Это значит, что всякий раз, когда система оказывается в данном состоянии, ее внутренняя энергия принимает определенное присущее этому состоянию зна­чение.

∆U = U 2 - U 1

где U 1 и U 2 - внутренняя энергия системы в конечном и началь­ном состояниях cсоответственно.

Первый закон термодинамики. Если система обменивается с внешней средой тепловой энергией Q и механической энергией (работой) А, и при этом переходит из состояния 1 в состоянии 2, количество энергии, которое выделится или поглощается системой форм теплоты Q или работой А равно полной энергии системы при переходе из одного состояния в другое и записывается.

ЛЕКЦИЯ 1

Биоорганическая химия (БОХ), ее значение в медицине

БОХ – это наука, изучающая биологическую функцию органических веществ в организме.

БОХ возникла во 2-ой половине ХХ века. Объектами ее изучения служат биополимеры, биорегуляторы и отдельные метаболиты.

Биополимеры – высокомолекулярные природные соединения, которые являются основой всех организмов. Это пептиды, белки, полисахариды, нуклеиновые кислоты (НК), липиды и др.

Биорегуляторы – соединения, которые химически регулируют обмен веществ. Это витамины, гормоны, антибиотики, алкалоиды, лекарственные препараты и др.

Знание строения и свойств биополимеров и биорегуляторов позволяет познать сущность биологических процессов. Так, установление строения белков и НК позволило развить представления о матричном биосинтезе белка и роли НК в сохранении и передаче генетической информации.

БОХ играет большую роль в установлении механизма действия ферментов, лекарств, процессов зрения, дыхания, памяти, нервной проводимости, мышечного сокращения и др.

Основная проблема БОХ – это выяснение взаимосвязи структуры и механизма действия соединений.

БОХ основана на материале органической химии.

ОРГАНИЧЕСКАЯ ХИМИЯ

Это наука, изучающая соединения углерода. В настоящее время насчитывается ~ 16 млн. органических веществ.

Причины многообразия органических веществ.

1. Соединения атомов С друг с другом и др. элементами периодической системы Д. Менделеева. При этом образуются цепи и циклы:

Прямая цепь Разветвленная цепь


Тетраэдрическая Плоскостная конфигурация

конфигурация атома С атома С

2. Гомология – это существование веществ с близкими свойствами, где каждый член гомологического ряда отличается от предыдущего на группу
–СН 2 –. Например, гомологический ряд предельных углеводородов:

3. Изомерия – это существование веществ, имеющих одинаковый качественный и количественный состав, но различное строение.

А.М. Бутлеров (1861) создал теорию строения органических соединений, которая и по сей день служит научной основой органической химии.

Основные положения теории строения органических соединений:

1) атомы в молекулах соединены друг с другом химическими связями в соответствии с их валентностью;



2) атомы в молекулах органических соединений соединяются между собой в определенной последовательности, что обусловливает химическое строение молекулы;

3) свойства органических соединений зависят не только от числа и природы входящих в их состав атомов, но и от химического строения молекул;

4) в молекулах существует взаимное влияние атомов как связанных, так и непосредственно друг с другом не связанных;

5) химическое строение вещества можно определить в результате изучения его химических превращений и, наоборот, по строению вещества можно охарактеризовать его свойства.

Рассмотрим некоторые положения теории строения органических соединений.


Структурная изомерия

Она делится:

1) Изомерия цепи

2) Изомерия положения кратной связи и функциональных групп

3) Изомерия функциональных групп (межклассовая изомерия)

Формулы Ньюмена

Циклогексан

Форма «кресла» более энергетически выгодна, чем «ванна».

Конфигурационные изомеры

Это стереоизомеры, молекулы которых имеют различное расположение атомов в пространстве без учета конформаций.

По типу симметрии все стереоизомеры делятся на энантиомеры и диастереомеры.

Энантиомеры (оптические изомеры, зеркальные изомеры, антиподы) – это стереоизомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное отображение. Это явление наз-ся энантиомерией. Все химические и физические св-ва энантиомеров одинаковы, кроме двух: вращение плоскости поляризованного света (в приборе поляриметре) и биологическая активность. Условия энантиомерии: 1) атом С находится в состоянии sp 3 -гибридизации; 2) отсутствие всякой симметрии; 3) наличие асимметрического (хирального) атома С, т.е. атома, имеющего четыре разных заместителя.



Многие окси- и аминокислоты обладают способностью вращать плоскость поляризации луча света влево или вправо. Это явление наз-ся оптической активностью, а сами молекулы оптически активными. Отклонение луча света вправо отмечают знаком «+», влево – «–» и указывают угол вращения в градусах.

Абсолютную конфигурацию молекул определяют сложными физико-химическими методами.

Относительную конфигурацию оптически активных соединений определяют путем сравнения со стандартом глицеринового альдегида. Оптически активные вещ-ва, имеющие конфигурацию правовращающего или левовращающего глицеринового альдегида (М. Розанов, 1906), наз-ся вещ-вами D- и L-ряда. Равная смесь право- и левовращающих изомеров одного соединения наз-ся рацематом и оптически неактивна.

Исследования показали, что знак вращения света нельзя связывать с принадлежностью вещ-ва к D- и L-рядам, его определяют только экспериментально в приборах – поляриметрах. Например, L-молочная к-та имеет угол вращения +3,8 о, D- молочная к-та - -3,8 о.

Энантиомеры изображают с помощью формул Фишера.

L-ряд D-ряд

Среди энантиомеров могут быть симметричные молекулы, не обладающие оптической активностью, и наз-ся мезоизомерами.


Например: Винная к-та

D – (+) – ряд L – (–) – ряд Мезовинная к-та

Рацемат – виноградная к-та

Оптические изомеры, не являющиеся зеркальными изомерами, отличающиеся конфигурацией нескольких, но не всех асимметрических атомов С, обладающие различными физическими и химическими св-вами, наз-ся s-ди -а -стереоизомерами.

p-Диастереомеры (геометрические изомеры) – это стереомеры, имеющие в молекуле p-связь. Они встречаются у алкенов, непредельных высших карбоновых к-т, непредельных дикарбоновых к-т

Биологическая активность органических вещ-в связана с их строением.

Например:

Цис-бутендиовая к-та, Транс-бутендиовая к-та,

малеиновая к-та – фумаровая к-та – не ядовита,

очень ядовита содержится в организме

Все природные непредельные высшие карбоновые к-ты являются цис-изомерами.

ЛЕКЦИЯ 2

Сопряженные системы

В простейшем случае сопряженные системы – это системы с чередующимися двойными и одинарными связями. Они могут быть открытыми и закрытыми. Открытая система имеется в диеновых углеводородах (УВ).

Примеры:

СН 2 = СН – СН = СН 2

Бутадиен-1, 3

Хлорэтен

СН 2 = СН – Сl

Здесь происходит сопряжение p-электронов с р-электронами. Этот вид сопряжения наз-ся р, p-сопряжением.

Закрытая система имеется в ароматических УВ.

С 6 Н 6

Бензол

Ароматичность

Это понятие, включающее различные свойства ароматических соединений. Условия ароматичности: 1) плоский замкнутый цикл, 2) все атомы С находятся в sp 2 – гибридизации, 3) образуется единая сопряженная система всех атомов цикла, 4) выполняется правило Хюккеля: “В сопряжении участвуют 4n+2 p-электронов, где n = 1, 2, 3... ”

Простейший представитель ароматических УВ – бензол. Он удовлетворяет всем четырем условиям ароматичности.

Правило Хюккеля: 4n+2 = 6, n = 1.

Взаимное влияние атомов в молекуле

В 1861 г русский ученый А.М. Бутлеров высказал положение: «Атомы в молекулах взаимно влияют друг на друга». В настоящее время это влияние передается двумя путями: индуктивным и мезомерным эффектами.

Индуктивный эффект

Это передача электронного влияния по цепи s-связи. Известно, что связь между атомами с различной электроотрицательностью (ЭО) поляризована, т.е. смещена к более ЭО атому. Это приводит к появлению на атомах эффективных (реальных) зарядов (d). Такое электронное смещение наз-ся индуктивным и обозначается буквой I и стрелкой ®.

, X = Наl -, НО -, НS -, NН 2 - и др.

Индуктивный эффект может быть положительным или отрицательным. Если заместитель Х притягивает электроны химической связи сильнее, чем атом Н, то он проявляет – I. I(Н) = О. В нашем примере Х проявляет – I.

Если заместитель Х притягивает электроны связи слабее, чем атом Н, то он проявляет +I. Все алкилы (R = СН 3 -, С 2 Н 5 - и т.д.), Ме n + проявляют +I.

Мезомерный эффект

Мезомерный эффект (эффект сопряжения) – это влияние заместителя, передаваемое по сопряженной системе p-связей. Обозначается буквой М и изогнутой стрелкой. Мезомерный эффект может быть «+» или «–».

Выше было сказано, что имеется два вида сопряжения p, p и р, p.

Заместитель, притягивающий электроны из сопряженной системы, проявляет –М и наз-ся электроноакцептором (ЭА). Это заместители, имеющие двой-


ную связь и др.

Заместитель, отдающий электроны в сопряженную систему, проявляет +М и наз-ся электронодонором (ЭД). Это заместители с одинарными связями, имеющие неподеленную электронную пару (и др.).

Таблица 1 Электронные эффекты заместителей

Заместители Ориентанты в С 6 Н 5 -R I М
Аlk (R-): СН 3 -, С 2 Н 5 -... Ориентанты I рода: направляют ЭД заместители в орто- и пара- положения +
– Н 2 , –NНR, –NR 2 +
– Н, – Н, – R +
–Н L +

ЛЕКЦИЯ 3

Кислотность и основность

Для характеристики кислотности и основности органических соединений применяют теорию Бренстеда. Основные положения этой теории:

1) Кислота – это частица, отдающая протон (донор Н +); основание – это частица, принимающая протон (акцептор Н +).

2) Кислотность всегда характеризуется в присутствии оснований и наоборот.

А – Н + : В Û А – + В – Н +

осн-ие к-та

СН 3 СООН + НОН Û СН 3 СОО – + Н 3 О +

К-та Осн-ие Сопряженное Сопряженная

осн-ие к-та

НNО 3 + СН 3 СООH Û СН 3 СООН 2 + + NО 3 -

К-та Осн-ие Сопряженная Сопряженное

к-та осн-ие

Кислоты Бренстеда

3) К-ты Бренстеда делятся на 4 вида в зависимости от кислотного центра:

SН к-ты (тиолы),

ОН к-ты (спирты, фенолы, карбоновые к-ты),

NН к-ты (амины, амиды),

СН к-ты (УВ).

В этом ряду сверху вниз кислотность уменьшается.

4) Сила к-ты определяется стабильностью образующегося аниона. Чем стабильнее анион, тем сильнее к-та. Стабильность аниона зависит от делокализации (распределения) «-» заряда по всей частице (аниону). Чем больше делокализован «-» заряд, тем стабильнее анион и сильнее к-та.

Делокализация заряда зависит:

a) от электроотрицательности (ЭО) гетероатома. Чем больше ЭО гетероатома, тем сильнее соответствующая к-та.

Например: R – ОН и R – NН 2

Спирты более сильные к-ты, чем амины, т.к. ЭО (О) > ЭО (N).

б) от поляризуемости гетероатома. Чем больше поляризуемость гетероатома, тем сильнее соответствующая к-та.

Например: R – SН и R – ОН

Тиолы более сильные к-ты, чем спирты, т.к. атом S более поляризован, чем атом О.

в) от характера заместителя R (длины его, наличие сопряженной системы, делокализации электронной плотности).

Например: СН 3 – ОН, СН 3 – СН 2 – ОН, СН 3 – СН 2 – СН 2 – ОН

Кислотность <, т.к. увеличивается длина радикала

При одинаковом кислотном центре сила спиртов, фенолов и карбоновых к-т не одинакова. Например,

СН 3 – ОН, С 6 Н 5 – ОН,

Сила к-ты увеличивается

Фенолы являются более сильными к-тами, чем спирты за счет р, p-сопряжения (+М) группы –ОН.

Связь О–Н более поляризуется в фенолах. Фенолы могут взаимодействовать даже с солями (FеС1 3) – качественная реакция на фенолы. Карбоновые
к-ты по сравнению со спиртами, содержащими одинаковый R, являются более сильными к-тами, т.к. связь О–Н значительно поляризована за счет –М эффекта группы > С = О:

Кроме того карбоксилат-анион более стабилен, чем анион спирта за счет р,p-сопряжения в карбоксильной группе.

г) от введения заместителей в радикал. ЭА заместители увеличивают кислотность, ЭД заместители уменьшают кислотность.

Например:

р-Нитрофенол более сильная к-та, чем р-аминофенол, т.к. группа –NО 2 является ЭА.

СН 3 –СООН ССl 3 –СООН

рК 4,7 рК 0,65

Трихлоруксусная к-та во много раз сильнее СН 3 СООН за счет – I атомов Сl как ЭА.

Муравьиная к-та Н–СООН сильнее СН 3 СООН за счет +I группы СН 3 – уксусной к-ты.

д) от характера растворителя.

Если растворитель является хорошим акцептором протонов Н + , то сила
к-ты увеличивается и наоборот.

Основания Бренстеда

5) Они делятся на:

а) p-основания (соединения с кратными связями);

б) n-основания (аммониевые, содержащие атом ,

оксониевые, содержащие атом ,

сульфониевые, содержащие атом )

Сила основания определяется стабильностью образующегося катиона. Чем стабильнее катион, тем сильнее основание. Другими словами, сила основания тем больше, чем менее прочная связь с гетероатомом (О, S, N), имеющим свободную электронную пару, атакуемую Н + .

Стабильность катиона зависит от тех же факторов, что и стабильность аниона, но с обратным действием. Все факторы, усиливающие кислотность, уменьшают основность.

Самыми сильными основаниями являются амины, т.к. атом азота имеет меньшую ЭО по сравнению с О. При этом вторичные амины более сильные основания, чем первичные, третичные амины слабее вторичных за счет стерического фактора, затрудняющего доступ протона к N.

Ароматические амины более слабые основания, чем алифатические, что объясняется +М группы –NН 2 . Электронная пара азота, участвуя в сопряжении, становится малоподвижной.

Стабильность сопряженной системы затрудняет присоединение Н + .

В мочевине NН 2 –СО– NН 2 присутствует ЭА группа > С = О, которая значительно снижает оснóвные св-ва и мочевина образует соли только с одним эквивалентом к-ты.

Т.о., чем сильнее к-та, тем слабее образуемое ею основание и наоборот.

Спирты

Это производные УВ, у которых один или несколько атомов Н замещены на –ОН группу.

Классификация:

I. По количеству групп ОН различают одноатомные, двухатомные и многоатомные спирты:

СН 3 -СН 2 -ОН

Этанол Этиленгликоль Глицерин

II. По характеру R различают: 1) предельные, 2) непредельные,
3) циклические, 4) ароматические.

2) СН 2 = СН-СН 2 -ОН

Аллиловый спирт

3) К непредельным циклическим спиртам относятся:

ретинол (витамин А) и холестерин

Инозит

витаминоподобное в-во


III. По положению гр. –ОН различают первичные, вторичные и третичные спирты.

IV. По количеству атомов С различают низкомолекулярные и высокомолекулярные.

СН 3 –(СН 2) 14 –СН 2 –ОН (С 16 Н 33 ОН) СН 3 –(СН 2) 29 –СН 2 ОН (С 31 Н 63 ОН)

Цетиловый спирт Мирициловый спирт

Цетилпальмитат – основа спермацета, мирицилпальмитат содержится в пчелином воске.

Номенклатура:

Тривиальная, рациональная, МН (корень+окончание «ол»+арабская цифра).

Изомерия:

цепи, положения гр. –ОН, оптическая.

Строение молекулы спирта

СН-кислотный Nu центр


Электрофильный Центр Кислотный

центр основности центр

Р-ции окисления

1) Спирты – слабые кислоты.

2) Спирты – слабые основания. Присоединяют Н + лишь от сильных кислот, но они более сильные Nu.

3) –I эффект гр. –ОН увеличивает подвижность Н у соседнего углеродного атома. Углерод приобретает d+ (электрофильный центр, S Е) и становится центром нуклеофильной атаки (Nu). Связь С–О рвется более легко, чем Н–О, поэтому характерными для спиртов явл-ся р-ции S N . Они, как правило, идут в кислой среде, т.к. протонирование атома кислорода увеличивает d+ атома углерода и облегчает разрыв связи. К этому типу относятся р-ции образования эфиров, галогенопроизводных.

4) Смещение элекронной плотности от Н в радикале приводит к появлению СН-кислотного центра. В этом случае идут р-ции окисления и элиминирования (Е).

Физические св-ва

Низшие спирты (С 1 –С 12) – жидкости, высшие – твердые вещ-ва. Многие св-ва спиртов объясняются образованием Н-связи:

Химические св-ва

I. Кислотно-оснóвные

Cпирты – слабые амфотерные соединения.

2R–ОН + 2Nа ® 2R–ОNа + Н 2

Алкоголят

Алкоголяты легко гидролизуются, что показывает – спирты более слабые кислоты, чем вода:

R– ОNа + НОН ® R–ОН + NаОН

Оснóвный центр в спиртах – гетероатом О:

СН 3 -СН 2 -ОН + Н + ® СН 3 -СН 2 - -Н ® СН 3 -СН 2 + + Н 2 О

Если р-ция идет с галогеноводородами, то присоединяться будет галогенид-ион: СН 3 -СН 2 + + Сl - ® СН 3 -СН 2 Сl

НС1 RОН R-СООН NН 3 С 6 Н 5 ОNа

С1 - R-О - R-СОО - NН 2 - С 6 Н 5 О -


Анионы в таких р-циях выступают в качестве нуклеофилов (Nu) за счет «-» заряда или неподеленной электронной пары. Анионы являются более сильными основаниями и нуклеофильными реагентами, чем сами спирты. Поэтому на практике для получения простых и сложных эфиров используются –алкоголяты, а не сами спирты. Если нуклеофилом является другая молекула спирта, то она присоединяется к карбокатиону:

Простой эфир
СН 3 -СН 2 + + ® СН 3 -СН 2 + - - Н СН 3 -СН 2 -О-R

Это р-ция алкилирования (введение алкила R в молекулу).

Заместить –ОН гр. на галоген можно при действии РСl 3 , РСl 5 и SОСl 2 .

По такому механизму легче реагируют третичные спирты.

Р-цией S Е по отношению к молекуле спирта является р-ция образования сложных эфиров с органическими и минеральными к-тами:

R – О Н + Н О – R – О – + Н 2 О

Сложный эфир

Это р-ция ацилирования – введение ацила в молекулу.

СН 3 -СН 2 -ОН + Н + СН 3 -СН 2 - -Н СН 3 -СН 2 +

При избытке Н 2 SО 4 и более высокой температуре, чем в случае р-ции образования простых эфиров, идет регенерация катализатора и образуется алкен:

СН 3 -СН 2 + + НSО 4 - ® СН 2 = СН 2 + Н 2 SО 4

Легче идет р-ция Е для третичных спиртов, труднее для вторичных и первичных, т.к. в последних случаях образуется менее стабильные катионы. В данных р-циях выполняется правило А. Зайцева: «При дегидратации спиртов атом Н отщепляется от соседнего атома С с меньшим содержанием атомов Н».

СН 3 -СН = СН -СН 3

Бутанол-2

В организме гр. –ОН превращается в легкоуходящую путем образования эфиров с Н 3 РО 4:

СН 3 -СН 2 -ОН + НО–РО 3 Н 2 СН 3 -СН 2 -ОРО 3 Н 2

IV. Р-ции окисления

1) Первичные и вторичные спирты окисляются СuО, растворами КМnО 4 , К 2 Сr 2 О 7 при нагревании с образованием соответствующих карбонилсодержащих соединений:

3)

Нитроглицерин – бесцветная маслянистая жидкость. В виде разбавленных спиртовых растворов (1%) применяется при стенокардии, т.к. оказывает сосудорасширяющее действие. Нитроглицерин – сильное взрывчатое вещество, способное взрываться от удара или при нагревании. При этом в малом объеме, который занимает жидкое вещество, мгновенно образуется очень большой объем газов, что и вызывает сильную взрывную волну. Нитроглицерин входит в состав динамита, пороха.

Представители пентитов и гекситов – ксилит и сорбит – соответственно, пяти- и шестиатомные спирты с открытой цепью. Накопление –ОН групп ведет к появлению сладкого вкуса. Ксилит и сорбит – заменители сахара для больных диабетом.

Глицерофосфаты – структурные фрагменты фосфолипидов, применяются как общеукрепляющее средство.

Бензиловый спирт

Изомеры положения